# Table of Contents

## SECTION A  CRITERIA AND GUIDELINES

1.0 REGULATORY REQUIREMENTS .................................................................................................................. 3  
2.0 RESPONSIBILITIES ...................................................................................................................................... 3  
3.0 MONITORING AND MAINTENANCE ........................................................................................................... 4  
4.0 EFFECTIVE EROSION & SEDIMENT CONTROLS .................................................................................... 5  
5.0 BEST MANAGEMENT PRACTICES (BMPs) ................................................................................................. 8  
Appendix A  Maintenance Check Sheets ......................................................................................................... 11  
Glossary.......................................................................................................................................................... 95

## SECTION B  BMP STANDARDS AND SPECIFICATIONS FOR EROSION CONTROL MEASURES

| EROSION CONTROL STANDARD 1: SEEDING ........................................................................................................... 15 |
| EROSION CONTROL STANDARD 2: MULCHING .............................................................................................. 18 |
| EROSION CONTROL STANDARD 3: HYDROSEEDING ................................................................................... 21 |
| EROSION CONTROL STANDARD 4: SODDING ................................................................................................ 23 |
| EROSION CONTROL STANDARD 5: RIP-RAP ................................................................................................ 27 |
| EROSION CONTROL STANDARD 6: AGGREGATE COVER ........................................................................... 29 |
| EROSION CONTROL STANDARD 7: CHEMICAL STABILIZATION .................................................................. 31 |
| EROSION CONTROL STANDARD 8: NETS AND MATTING ......................................................................... 33 |
| EROSION CONTROL STANDARD 9: TREES AND SHRUBS .......................................................................... 36 |
| EROSION CONTROL STANDARD 10: GRASSED WATERWAYS ...................................................................... 43 |
| EROSION CONTROL STANDARD 11: STORMWATER CHANNELS AND DITCHES ........................................... 48 |
| EROSION CONTROL STANDARD 12: CONSTRUCTION ROADS AND PARKING AREAS .................................. 49 |

## SECTION C  BMP STANDARDS AND SPECIFICATIONS FOR SEDIMENT CONTROL MEASURES

| SEDIMENT CONTROL MEASURE 1: VEGETATIVE BUFFER STRIP ................................................................. 52 |
| SEDIMENT CONTROL MEASURE 2: ROCK FILTERS AND BRUSH BARRIERS ............................................ 56 |
| SEDIMENT CONTROL MEASURE 3: CHECK DAMS ..................................................................................... 60 |
| SEDIMENT CONTROL MEASURE 4: SILT FENCES ...................................................................................... 64 |
| SEDIMENT CONTROL MEASURE 5: GEOSYNTHETIC PERMEABLE BERMS ............................................ 68 |
| SEDIMENT CONTROL MEASURE 6: DRAIN INLET PROTECTION ............................................................... 70 |
| SEDIMENT CONTROL MEASURE 7: SEDIMENT TRAPS ............................................................................. 73 |
| SEDIMENT CONTROL MEASURE 8: SEDIMENT PONDS ........................................................................... 76 |
SECTION D BMP SPECIFICATION DETAILS

List of Figures

Page

Figure 1: Sodding............................................................................................................. 24
Figure 2: Netting and Matting........................................................................................... 34
Figure 3: Grassed Waterways.......................................................................................... 45
Figure 4: Vegetative Buffer Strip ...................................................................................... 52
Figure 5: Sod Filter (Vegetative Strip) .............................................................................. 54
Figure 6: Brush Barrier ..................................................................................................... 57
Figure 7: Stone/Rock Check Dam .................................................................................... 61
Figure 8: Log Check Dam ................................................................................................ 62
Figure 9: Silt Fence ........................................................................................................... 64
Figure 10: Conditions that Limit Silt Fence Effectiveness ................................................... 67
Figure 11: Types of Drain Inlet Protection ......................................................................... 70
Figure 12: Typical Sediment Trap ..................................................................................... 74

List of Tables

Page

Table 1: Chemical Soil Stabilizers................................................................................... 32
Table 2: Native Trees and Shrubs................................................................................... 37
Table 3: Permissible Velocities in Earth and Grass-Lined Channels ............................... 43
PREFACE

Information contained in this document is intended to assist with the implementation and installation of erosion and sediment control measures in Calgary. These are not intended as rigid procedures, as it is anticipated that those responsible for implementation will continue to utilize innovative approaches which best address specific situations and changing site conditions.

This Field Manual is intended for use by contractors and inspectors out in the field or at construction sites. The manual provides a quick reference to erosion and sediment control standards outlined in The City of Calgary “Guidelines for Erosion & Sediment Control”. This document is not meant as a replacement to the Guidelines, but merely serves as a supplement or quick reference.

Development of all sites must adhere to the City of Calgary “Guidelines for Erosion & Sediment Control”. For sites less than 2 ha, this will generally consist of good housekeeping measures, and where practicable, erosion and sediment controls to control runoff on-site. For sites larger than 2 ha, an Erosion and Sediment Control Report outlining erosion and sediment control measures must be developed and submitted to the City of Calgary for approval in order to obtain stripping and grading permission. For further information, please refer to Sections 2.0 and 7.0 in the “Guidelines for Erosion & Sediment Control” manual.

It should also be noted that this manual is not intended to preclude the recommendations made in specific Erosion and Sediment Control Reports that have been approved by the City of Calgary.

ORDERING

Copies of this document may be obtained by:

(1) City of Calgary
    Planning & Transportation Policy #8108
    Information Centre (Document Sales)-4th floor
    800 Macleod Trail SE
    (403)268-5333
    Fax: (403)268-4615

(2) City of Calgary
    Engineering Services #8026
    Building Grades Counter-6th floor
    800 Macleod Trail SE
    (403)268-5703

(3) Web Site: www.gov.calgary.ab.ca/wwd
1.0 REGULATORY REQUIREMENTS

There are a number of federal, provincial and municipal acts and/or legislation governing either urban development or sediment control in general. Failure to comply with this legislation can result in fines and/or imprisonment. For further information, please refer to City of Calgary “Guidelines for Erosion & Sediment Control” and “Stormwater Management & Design Manual” (2000) by Wastewater & Drainage.

Release Reporting Regulation (Alberta Regulation 117/93)

The Release Reporting Regulation is part of the Environmental Protection and Enhancement Act (EPEA) and deals with reporting requirements. Pursuant to sections 99 and 100 of the Act, releases of substances that cause or may cause an adverse affect on the environment must be reported. Release of substances includes sediment-laden runoff from construction sites. Reporting is required under the provincial Release Reporting Regulation (117/93). All releases should be reported directly to Alberta Environment.

Remedial Measures

Under section 101 of the Environmental Protection and Enhancement Act, there is also a duty to take remedial measures where a substance has caused, is causing or may cause an adverse effect, is released into the environment. The person responsible for the substance shall take all reasonable measures to repair, remedy and confine the effects of the substance, and remove or otherwise dispose of the substance in such a manner as to effect maximum protection of human life, health and the environment. The environment must be restored to a condition satisfactory to the Director of Alberta Environment.

2.0 RESPONSIBILITIES

Erosion and sediment control is ultimately the responsibility of the property owner, which is typically the developer or landowner. However, the landowner can also include the City of Calgary. Although the developer/landowner has prime responsibility,

Erosion and Sediment Control is Everyone’s Responsibility!

Everyone has a role in protecting our watercourses through erosion and sediment control. This includes:

- Federal Government
- Provincial Government (Alberta Environment)
- City of Calgary
3.0 MONITORING AND MAINTENANCE

Once erosion and sediment control measures have been selected, it is important that their effectiveness be monitored, the necessary maintenance be carried out, and there be a contingency plan for failures. The success of the entire erosion and sediment control strategy will depend upon this, and its importance cannot be overemphasized. All temporary and permanent erosion and sediment control measures shall be inspected, maintained and repaired by the developer/owner, or an appointed designate, during the construction phase as needed to ensure continued performance. As a minimum, all construction sites should employ good housekeeping practices.

INSPECTIONS

All erosion and sediment controls must be inspected every 7 days and following heavy rainstorms or snowmelt events. All disturbed areas of the site, material storage areas, entrance and exit roads, and all erosion and sediment controls must be inspected. The controls must be in good operating condition until the area they protect has been completely stabilized and the construction activity complete. Inspection is the responsibility of the developer/owner or his designate, which could be the contractor and/or consultant. Inspection procedures may vary depending on the season (i.e. spring/summer compared to fall/winter).

The developer/owner or his designate is ultimately responsible for the adequacy, proper installation, and maintenance of the erosion and sediment control measures. However, the City of Calgary will inspect construction sites for compliance. This in no way eliminates the need for the developer/owner or designate to provide their own inspectors or conduct their own inspections. Inspections may also be conducted by the Provincial and Federal Inspectors to ensure compliance.

Pursuant to sections 99 and 100 of the Environmental Protection and Enhancement Act, releases of substances that cause or may cause an adverse effect on the environment must be reported. Release of substances includes sediment-laden runoff from construction sites. Reporting is required under the provincial Release Reporting Regulation (117/93). See Section 2.2.2. Prohibited substances and releases into storm drainage systems are provided in the Wastewater and Storm Drainage
Regulation (119/93). See Section 2.2.3.

MAINTENANCE AND REPAIRS

Maintenance and repair of the control measures are the responsibility of the developer/owner, or the appointed designate. A schedule of planned maintenance activities is required with the submission of the Erosion and Sediment Control Plan and report and should be followed. When implemented controls are insufficient or not working properly, changes to the ESC Plan and Report must be made to ensure continued compliance.

Damage or deficiencies to control measures should be corrected as soon as practicable after an inspection, but in no case later than 7 days after the inspection.

RECORDS

The developer/owner, or his designate, must maintain an inspection record of any maintenance, damages or deficiencies of erosion and sediment control measures. An inspection and report must be undertaken every 7 days and following heavy rainstorms or snowmelt events. The same document can be used to record maintenance and repairs undertaken after the inspection. It is the responsibility of the developer/owner, or designate, to design and implement the inspection and maintenance record. The record must be signed by the developer’s/owner’s inspector and must be available for review by the City’s inspectors at any time. Failure to complete inspection/maintenance record(s), follow erosion and sediment control practices, or adequately maintain ESC controls, will require bi-weekly submission of the inspection and maintenance record to the City’s Development Inspector for review.

Refer to Appendix A for examples of Maintenance Check Sheets.

4.0 EFFECTIVE EROSION & SEDIMENT CONTROLS

TEN STEPS TO KEEP SOIL IN PLACE
AND TO LOWER COSTS

To keep soil from washing or blowing off of a construction site, and to prevent costly repairs, lawsuits and clean-ups, here are ten important points to remember:

1. Make erosion control as much of a priority as any other construction component.
2. Use common sense.
3. Start with a good plan.
4. Follow the good plan.
5. Minimize the amount of land disturbed at any one time.
6. Protect the perimeter of the construction site and contain eroded soil on site.
7. Install temporary erosion and sediment control measures.
8. Stabilize disturbed areas as quickly as possible.
9. Learn how to install materials properly.
10. Maintain erosion and sediment control structures.

**KEY POINTS**

**Construction site erosion:**

1. Construction sites can erode at 10 to 100 tons of soil per acre per year...
2. The most effective way to keep soil on construction sites is to prevent erosion...
3. *Vegetative cover can virtually eliminate erosion. Cover is one of the single-most effective erosion control practices...*

**Phasing:**

1. Do clearing operations in phases and take advantage of cover that exists on-site before construction...
2. Establish final vegetation as soon as portions of the site can be made ready...

**Temporary cover:**

Portions of most construction sites remain unworked for months at a time...

1. Apply temporary cover to different areas several times throughout construction...
2. Stabilize areas as quickly as possible when they may be idle for more than 30 days...

**Establishing vegetation:**

1. Use any means necessary to cover the soil...

**Trapping sediment from construction site runoff:**

1. Sediment control means ponding runoff and allowing sediment to settle...
2. Sediment control practices must be able to trap very large quantities of soil...
3. Runoff must be ponded for several hours, even days for the sediment to settle...

**Sediment filtering barriers:**

1. Maximizing a sediment barrier’s ponding volume maximizes the sediment trapped...
2. Construct sediment barriers on the contour, not up and down slopes...
3. Slopes draining to sediment barriers generally should not be more than 30 m
long...

4. Sediment barriers do not provide effective sediment removal from concentrated flows...

5. Sediment barriers must be trenched in and staked to hold up under the pressure of the wall of water they will dam...

**Inlet Protection:**

1. Maximizing inlet protection ponding volume maximizes the sediment trapped...

2. Sediment barriers around inlets must be especially durable...

3. Inlet protection generally provides limited sediment removal; it should not be the principle means of sediment control...

**Advantages of settling impoundments:**

1. Settling impoundments have high sediment removal efficiencies...

2. Impoundments can function through all construction phases and have low maintenance requirements...

3. Settling impoundments include sediment traps and sediment ponds/basins...

**Siting and locating settling impoundments:**

1. Locate settling impoundments to intercept runoff before and after the on-site drainage system is developed...

2. Settling impoundments should catch only construction site runoff, not clean water from off-site...

**Sediment traps:**

1. Sediment traps are small settling impoundments with a stable spillway outlet...

2. Sediment traps are used for drainage areas **less than 2 ha** or where the risk of failure is slight...

3. Sediment traps should be sized for a **minimum storage volume of 150 m$^3$/ha** over the contributing drainage area. **Storage volumes of 250 m$^3$/ha are recommended where site conditions and construction practices warrant higher sediment trapping**...

4. Sediment trap design should incorporate an overflow depression...

**Settling ponds and basins:**

1. Settling ponds and basins are large settling impoundments. The two terms, ponds and basins, are frequently used interchangeably.

2. Sediment ponds and basins are used for drainage areas **exceeding 2 ha**...

3. Sediment ponds or basins should be sized for a **minimum storage volume of 250 m$^3$/ha** over the contributing drainage area, where possible. **This corresponds to the minimum water quality control volume required for**
permanent facilities. All sediment pond designs must be carried out by qualified engineering design consultants...

4. Sediment pond/basin design should include an emergency spillway composed of riprap. An outlet riser pipe, or approved equivalent, must also be incorporated in the design...

5. Construct settling ponds/basins so runoff does not short-circuit the pond. Length to Width ratio should be between 3:1 and 6:1...

6. The maximum pond/basin depth should **not** exceed 1.5 m...

7. If the pond/basin is designed for dewatering, dewatering must be at a very slow rate of 1 to 3 days...

**Permanent ponds:**

1. Advance planning allows permanent stormwater management ponds to be used for sediment control during construction...

2. A temporary outlet may be needed to discharge clean water from the pond surface.

**5.0 BEST MANAGEMENT PRACTICES (BMPS)**

Best Management Practices, or BMPs, are activities or practices, or a combination of practices, that are designed to prevent or reduce the release of pollutants to receiving waters or streams. BMPs operate by trapping stormwater runoff and detaining it until unwanted pollutants such as sediment, phosphorous and other harmful contaminants are allowed to settle out or be filtered through underlying soils. The trapped pollutants are then removed through periodic maintenance. Best Management Practices (BMPs) are synonymous (i.e. interchangeable) with erosion and sediment control measures.

**GOOD HOUSEKEEPING PRACTICES**

There are many erosion and sedimentation concerns that arise due to construction activities. These include, but are not limited to the following:

a) Mud tracking from construction sites onto adjacent properties and streets

 b) Silt and debris washed into the existing storm sewer (or drainage) system

 c) Silt and debris transported to receiving watercourses by surface runoff and the sewer system

 d) Wind blown dust

However, good housekeeping, erosion and sediment control practices can be employed during construction to minimize and/or eliminate these concerns.

GOOD HOUSEKEEPING PRACTICES will help minimize erosion and sediment concerns, and should be considered when preparing the construction schedule. While some may be impractical under certain conditions, others should be considered based
on suitability, practicality and cost effectiveness.

1) Stockpiles should be located away from watercourses, environmentally sensitive areas, drainage courses, ravines, and existing adjacent developments. The stockpiles should be stabilized against erosion immediately following stripping operations. Stabilization can include, but is not limited to, establishment of a cover crop or a hydroseed matrix consisting of seed, fiber bond, and tackifier.

2) All construction vehicles should leave the site at a designated point or points. Gravelling or paving (where practical) of frequently used access roads will help ensure that minimal material such as mud is tracked off-site. The access road should consist of a bed of non-erodible material (i.e. gravel) of sufficient length to ensure that a minimum of material (mud) is tracked offsite onto adjacent municipal streets. Internal haul roads and/or track packs can also be designated and maintained to help reduce onsite tracking. In situations where mud tracking becomes a major problem, a high-pressure pump and hose installation may be used to provide a washdown facility for truck wheels.

3) When sewers have been installed or are existing, measures should be undertaken to ensure sediment and debris does not get into the municipal sewer system. Both catchbasins and manholes should be protected. This may be accomplished by sealing the openings, setting up sumps or weirs inside the structures, or by providing appropriate inlet protection (filter fences, sediment traps, etc.). A temporary drainage system should be used with appropriate velocity controls and temporary storage areas for sediment control. This will ensure that sediment and debris do not get into the municipal sewer system and into the downstream waterways. Diligent efforts must be taken to ensure that the temporary drainage system does not flood adjacent properties.

4) Where on-site or downstream detention facilities are provided, use can be made of a quantity control facility (through the placing of temporary weirs or check-dams) for sediment control during construction. (Therefore, all temporary and permanent detention facilities must be constructed prior to the installation of any services on the site or the commencement of earth-moving operations).

5) Dust control measures should be implemented to prevent wind transport of dust from disturbed soil surfaces. This may be accomplished several ways. Vegetate, hydroseed, or mulch areas that won’t receive vehicle traffic. Otherwise, construct wind breaks or screens. The site may also be sprinkled with water or a chemical dust suppressant to control dust; however, care must be taken to prevent the tracking of mud that may result. Otherwise, another effective tool is to reduce vehicle speeds to decrease the amount of dust stirred up.

6) All accumulated sediment and debris should be removed as required. Once construction activities are complete, all related materials and temporary structures should be removed and properly disposed of.
GOOD HOUSEKEEPING MEASURES FOR STORM SEWER PROTECTION

During construction, the following “good housekeeping” practices should be undertaken regardless of soil erodibility and any other erosion and sediment control measures undertaken to protect the storm sewer.

1) Special temporary sump manholes with an extended barrel should be provided at special locations throughout the storm system. Catchbasins may be provided on smaller systems. The sumps should be inspected and cleaned frequently.

2) At the downstream end of the site, the last manhole on the storm sewer should have a sump that will retain any large debris. The sump can be cleaned out and filled in with concrete at the end of the project.

3) Small weirs should be built into the pipes at manholes on the sites that are near the outlet for the site drainage. This will provide impounding within the minor system and encourage settlement of the sediment being transported. Care should be taken when removing the weirs that the sediment is not washed into the municipal system.

Once the catchbasins have been installed and connected to the minor system, the basins in rear yards, ditches and low activity areas should be buffered using filters on the upstream side.

EROSION AND SEDIMENT CONTROL MEASURES

Refer to Sections B, C and D for information.
INSPECTION CHECK SHEET

Sheet ____of ___

Project Name: ____________________________________________ File No. __________
Inspection Date: __________ Time: __________ Inspected by: _________________________

STAGE OF CONSTRUCTION

___ Pre-Construction Conference  ___ Rough Grading  ___ Finish Grading
___ Clearing and Grubbing  ___ Building Construction  ___ Final Stabilization

---

INSPECTION CHECKLIST

Yes  No  NA (not applicable)

{ }   { }   { } Have all denuded areas requiring temporary or permanent
stabilization been stabilized?
Seeded? yes/no  Mulched? yes/no  Gravelled? yes/no

{ }   { }   { } Are soil stockpiles adequately stabilized with seeding and/or sediment trapping
measures?

{ }   { }   { } Does permanent vegetation provide adequate stabilization?

{ }   { }   { } Have sediment-trapping facilities been constructed as a first step in stripping and
grading?

{ }   { }   { } For perimeter sediment trapping measures, are earthen structures stabilized?

{ }   { }   { } Are sediment basins installed where needed?

{ }   { }   { } Are finished cut and fill slopes adequately stabilized?

{ }   { }   { } Are on-site channels and outlets adequately stabilized?

{ }   { }   { } Do all operational storm sewer inlets have adequate inlet protection?

{ }   { }   { } Are stormwater conveyance channels adequately stabilized with channel lining and/or
outlet protection?

{ }   { }   { } Is in-stream construction conducted using measures to minimize channel damage?

{ }   { }   { } Are temporary stream crossings of non-erodible material installed where applicable?

{ }   { }   { } Is necessary restabilization of in-stream construction complete?

{ }   { }   { } Are utility trenches stabilized properly?

{ }   { }   { } Are soil and mud kept off public roadways at intersections with site access roads?

{ }   { }   { } Have all temporary control structures that are no longer needed been removed?

{ }   { }   { } Have all control structure repairs and sediment removal been performed?

{ }   { }   { } Are properties and waterways downstream from development adequately protected
from erosion and sediment deposition due to increases in peak stormwater runoff?

Comments:
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________

Verbal/Written notification given to: ____________________________________________ Date: __________

Report by: ____________________________________________ Date: __________
EROSION AND SEDIMENT INSPECTION LOG

Site: ____________________________________________________________ Contractors on Site: ____________________________________________

Heavy Equipment on Site: __________________________________________ Activities on Site: ___________________________________________

Date: __________________________ Weather: __________________________ mm of rain in last week: ____________________________

Note condition of the following measures and sediment levels where applicable:

<table>
<thead>
<tr>
<th>MEASURE</th>
<th>CONDITION/LOCATION</th>
<th>SEDIMENT LEVEL</th>
<th>ACTION REQUIRED</th>
<th>TYPE OF ACTION</th>
<th>ACTION COMPLETED (DATE)</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt fences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Storage Facilities</td>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet of Temporary Storage Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interceptor Swales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steeper Slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover of Rough Grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchbasins Filtering Controls</td>
<td>Filtering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Comments (Summarize):
__________________________________________________________________________________________________________________________________________
__________________________________________________________________________________________________________________________________________
__________________________________________________________________________________________________________________________________________

Inspectors Signature: ______________________________________ Inspectors Name: _________________________________________________
SECTION B

BMP STANDARDS AND SPECIFICATIONS FOR EROSION CONTROL STANDARDS
EROSION CONTROL STANDARD 1
SEEDING

INTRODUCTION
Seeding refers to the establishment of plant cover on disturbed areas by applying seeds of annual or perennial plants. The seeds are drilled or broadcast, either mechanically or by hand, depending upon site conditions. Grasses and legumes are commonly used in seed mixtures. Fertilizer, mulch and tackifier are often applied immediately with seeding. Seeding can provide long-term, temporary or permanent stabilization of disturbed areas. The cost of seeding a disturbed area is relatively low and its effectiveness on a long-term basis is quite high.

APPLICATION
The use of seeding as an erosion control measure can only be undertaken during or immediately preceding the growing season. Seeding is used on sites where long-term control is required over a time period of approximately six months. Seeding will not provide an immediate plant cover, and bare soil will persist until plants have developed unless Hydroseed Matrix is applied. Seeding is most appropriate in flat areas and on slopes less than 3H:1V, where equipment accessibility is not limited. Seed mixtures must be selected to suit the site conditions. Factors affecting plant growth include climate, soils, topography, land use and planting season. Site conditions will determine the application rate and mixture of seeds used.

DESCRIPTION
Grasses and legumes are generally used in seed mixtures. Grasses are highly adaptable to various site conditions and provide a dense and lasting ground cover. The fibrous root system of grasses anchors the soil and allows surface water to infiltrate more rapidly.

Legumes are commonly used in combination with various grasses. They are important because of their ability to fix nitrogen and to make it available for plant growth. Some species of legumes have large tap roots that enhance both soil stabilization and infiltration.

INSTALLATION
Site Preparation
To establish a good catch of vegetation, proper seedbed preparation is very important. The soil must be modified to provide the optimum environment for seed germination and seedling growth. Seedbed preparation includes surface roughening and fertilizing.

The surface soil must be loose enough for water infiltration and root penetration. Top layers of compacted soil should be loosened by discing, raking or other acceptable means prior to seeding.
A soil test should be completed to determine the nutrient and pH requirements. Soil tests may be conducted in the field using an appropriate soil testing kit, however, it is preferable to have the soil tested by a soil testing laboratory. The soil sample must be taken from the top 10 cm of the final graded substrate including any additional incorporated topsoil. The final pH of the soil should range from 6 to 7. If a soil test is not feasible, a fertilizer of ratio 1:4:4 N-P-K (Nitrogen-Phosphorous-Potassium) should be applied at a rate of 0.45 to 0.68 kg of nitrogen/100m².

**Seeding**

A seed drill or brillion seeder may be used under conditions of adequate moisture on areas suitable for the operation of machinery. Mulch is not mandatory if the seed is covered with soil or a seed drill is used. This method uses a low seeding rate and will give the best germination.

In broadcast seeding, seed is applied to the soil surface and is not cultivated into the soil. The seeding rate is higher than in seed drilling. A mulch is necessary to protect the seed and prevent it from being washed or blown away during germination. The mulch is applied after seed and fertilizer application (see [Erosion Control Standard 2 Mulching](#)).

The success of seeding operations will depend on adequate knowledge of site conditions including soil drainage, texture and pH. Whenever possible, expert advice should be sought concerning site conditions.

**MAINTENANCE**

Seeded areas should be maintained according to location and plan. High maintenance areas will be mowed frequently, irrigated, fertilized, and the weeds intensively controlled.

Low maintenance areas will receive proportionally less maintenance input. However, even low maintenance areas should be watered and fertilized to ensure that the seeding is effective and a stand of vegetation is established. The first year after seeding is critical. Water application rates should be heavy but controlled to prevent runoff.

Small areas of failure must be reseeded promptly. If the stand has less than 40% cover, the choice of plant material and quantities of soil amendments should be re-evaluated.

**SPECIFICATIONS**

1. Canada No. 1 seed shall be used for all seeding operations. Seed should be tested within six months of date of sowing. Seed mixes in or adjacent to natural areas should be reviewed by Park Development & Operations to ensure that undesirable species are not unintentionally introduced.
2. Seed application rates will be dictated by site conditions, climate, soils, topography, land use, planting season, and seed types. In general, seeding rates shall be at least 15 kg/ha on good agricultural soil. In areas where seed catch may be difficult due to poor nutrient status in the soil, seeding rates shall be at least 20 kg/ha.

3. When using a seed drill or brillion seeder, grasses and legumes shall not be planted more than 1 cm deep.

4. Bacterial innoculants must be used when seeding with legumes. A specific innoculant shall be used for the legume being seeded in accordance with supplier’s recommendations for specific products.

5. Fertilizer, in lieu of a soil test, shall be 1:4:4 fertilizer. It shall be applied at a rate of 45 to 68 kg of nitrogen/ha depending upon site conditions. Fertilizer use should be carefully controlled as this may increase nutrient loading to receiving streams if runoff is not controlled properly.

6. Seeding shall occur during periods when germination can be guaranteed and plants have sufficient time to become established before the end of the growing season (i.e. May 15 – June 1 and/or August 15 – September 15, plus or minus). Seeding should not occur after the 50 per cent frost probability date for the site.

7. When broadcast seeding, mulching is required.

8. Mulching of the exposed soil is required if seeding is carried out after the date specified in which fall seeding should not be carried out.
EROSION CONTROL STANDARD 2
MULCHING

INTRODUCTION
Mulching refers to the application of organic material or other suitable substances to the soil surface to conserve a desirable soil property or to promote plant growth. Mulches conserve soil moisture, prevent surface compaction, reduce runoff and surface erosion, control weeds, help establish plant cover, and provide fiber in a hydroseed matrix.

APPLICATION
Mulching can be used to provide both short and long-term erosion control. Mulches may be used in areas that are graded or not graded, and with or without the use of plant material. They may be applied immediately following broadcast seeding (or planting), or with seed application to provide suitable soil conditions for optimal plant growth. Mulching may also be used for long-term erosion control in the absence of plant material or seeding.

The choice of materials for mulching will be based on the type of soil to be protected, site conditions, season, costs, availability of materials, and the availability of labour and equipment. Non-biodegradable mulches should not be used in areas where they may become a source of litter.

DESCRIPTION
Organic mulches include straw, raw wood fiber, peat moss, wood chips, bark, pine needles, compost and verdyl. Chemical mulches include a wide range of synthetic spray-on materials marketed to stabilize and protect the soil surface. These can be emulsions or dispersions of vinyl compounds, asphalt, rubber or other substances that are mixed with water before application. Chemical mulches may be used to bind other mulches or with wood fiber in a hydroseed slurry.

Organic Mulches
(a) **Straw** – Straw refers to the stalks or stems of small grains (mostly wheat) after drying and threshing. Straw is packed in bales and is available in bulk quantities. It should be relatively free of weeds. Loose straw is very susceptible to windblow. When tacked down, it is highly suitable for promoting good grass cover quickly. It may, however, be a fire hazard.

(b) **Raw Wood Fiber** – This is a conglomeration of cellulose fibers 4 mm or longer extracted from wood. These fibers usually require a soil binder. Wood fiber is used in hydroteeding operations where it is applied as part of a slurry. It should not be used for erosion control during hot periods in the summer or late fall seeding unless it is used in association with another suitable mulch. It may be sprayed on top of an installed net and is well suited for tacking straw mulch on steep slopes.
(c) **Peat Moss** – This material consists of partly decomposed mosses accumulated under conditions of excessive moisture. It is usually available dried and compressed. It should be free from coarse material. Peat moss is a useful soil conditioner when mixed with the soil. When dry and placed on top of the soil, it may be susceptible to windblow.

(d) **Wood Chips** – These are small, thin pieces of sliced wood slabs and edgings produced as a by-product in sawmills. Wood chips decompose slowly. They are suitable around individual plants and for areas that will not be closely mowed. Wood chips are resistant to windblow.

(e) **Bark Chips, Shredded Bark** – These are slices and scrapings of tree bark produced as a by-product of timber processing. Suitable for areas that will not be closely mowed, they have a good moisture holding capacity and are resistant to windblow.

(f) **Pine Needles** – These leaves of pine trees should be air-dried and free from coarse material. They decompose slowly and are suitable for use with plants that prefer acid soils. Pine needles are resistant to windblow.

(g) **Compost of Straw Manure** – These are organic residues and straw that have been piled and allowed to undergo biological decomposition until relatively stable. Compost or straw manure should be well shredded, free from excessively coarse material and not wet. It has good moisture-holding capacity and is very suitable as a soil amendment. It should be resistant to windblow when moist.

**Chemical Mulches**

Chemical mulches, such as acrylic co-polymers and emulsifications, are generally part of a matrix of seed, bondable fiber and tackifier. Chemical mulches are typically applied with a hydroseeder. All applications should be applied according to site conditions and recommended product specifications.

**INSTALLATION**

Site grading and required sedimentation control practices should be undertaken prior to mulching. Surface roughening, fertilizer application and liming should occur prior to mulching if seeding is included (see Erosion Control Standard 1 Seeding).

The method of mulch application depends on the type of mulch being used. Organic mulches can be applied by hand or machine. Chemical mulches are usually applied with sprayers designed for asphalt emulsions or water.

With most mulches, steps must be taken to anchor the mulch or bind it to the soil. Methods include the use of chemical binders, asphalt spray, mulch netting, peg and twine, and punching or tracking.
Chemical binders are usually the same products that are used as chemical mulches (see Erosion Control Standard 7 Chemical Stabilization). They can be used in a hydroteeder or applied separately.

Asphalt spray must be used with straw, wood chips or compost. Asphalt must be thin enough to be blown from spray equipment. Mulch netting made from jute, wood fiber or plastic (see Erosion Control Standard 8 Nets and Matting) may be used with many organic mulches. Netting is often used on critical areas such as creek banks at water crossings. The installation of netting is usually labour-intensive.

Peg and twine is also labour intensive but suitable for small areas. Wooden pegs are placed every 120 cm in all directions. Twine is stretched between the pegs in a criss-cross within a square pattern.

Punching is suitable for straw mulch. The straw is cut into the soil surface with a square-edge spade in contour rows. Tracking involves driving a bulldozer over the straw. The cleats of the bulldozer cut the straw into the soil surface.

MAINTENANCE
All mulches should be inspected periodically, especially after rain storms, to check for erosion and decomposition. Where needed, additional mulch should be applied.

SPECIFICATIONS
1. Application rates for mulches are as follows:
   - Straw: 3000 to 4500 kg/ha
   - Raw wood fiber: 1000 to 2000 kg/ha
   - Peat moss: 10 to 30 m³/ha
   - Wood chips: 9,000 to 13,000 kg/ha
   - Bark chips, shredded bark: 90 to 140 m³/ha
   - Pine needles: 4000 to 5000 kg/ha
   - Compost or straw manure: 18,000 to 5000 kg/ha
   - Chemical mulches: Follow manufacturer’s recommendations

2. If applying straw by hand, divide the areas to be mulched into 100 m sections and place the straw in each section to facilitate uniform distribution.

3. Chemical mulches shall be applied at manufacturers recommended rates. They shall not be applied during very hot periods or during periods of frost.

4. When anchoring mulch with an asphalt emulsion, apply asphalt at 5400 L/ha. Do not use heavier applications as it may cause the straw to “perch” over rills.
EROSION CONTROL STANDARD 3
HYDROSEEDING

INTRODUCTION
Hydroseeding refers to the establishment of plant cover on distributed areas by applying in one operation, seed of annual and perennial plants along with fertilizers, mulch, soil adhesives and water. Seed, fertilizer, mulch, soil adhesives and water are mixed together in a holding tank to form a slurry. The slurry is held in suspension by continuous agitation. Using a high-pressure pump, the mixture is sprayed on the area to be re-vegetated.

APPLICATION
Hydroseeding may be used to provide soil stabilization in disturbed areas where it is economical, adaptable to site conditions, and allows selection of the most appropriate plant materials. Hydroseeding enables the quick re-vegetation of very steep, rocky or gravelly slopes where re-vegetation by any other method would be extremely difficult and expensive. It can also be used in areas where conventional methods such as broadcast seeding, seed drilling or sodding are applied.

The site must be accessible to the hydroseeding unit (mounted on a truck). The hoses from the hydroseeding unit have a maximum range of about 150 m.

DESCRIPTION
Seed, fertilizer and mulch should be carefully selected to conform to site conditions. Soil characteristics, climatic conditions, topography, land use and planting season should be considered when determining materials to be used in hydroseeding. The required amount of materials will again depend upon site conditions. If needed, soil stabilizing materials can be incorporated into the slurry.

Since the success of hydroseeding operations will depend on adequate knowledge of site conditions (including soil drainage, texture and pH) expert advice should be sought concerning methods for different circumstances.

INSTALLATION
Since hydroseeding often is used to re-vegetate hard to reach areas (i.e. steep slopes, dry sites with little or no topsoil), site preparation is not always possible. In accessible areas, however, surface roughening may be very advantageous prior to hydroseeding.

The surface soil must be loose enough for water infiltration and root penetration. When the areas to be hydroseeded are compacted, the soil surface should be loosened by discing, raking or other acceptable means prior to hydroseeding.

Seed, fertilizer, soil adhesives, mulch and water should be mixed together in the holding tank of the hydroseeding unit to form a slurry. The filling capacity of the holding tank usually varies between 440 and 660 litres. The slurry must be agitated continuously.
throughout the entire spraying process to ensure consistency. A special heavy pump produces the required pressure to spray the mix on the area to be re-vegetated. The mobile spray fund of the hydroseeding unit has a range of about 60 m. Hoses from the hydroseeding unit have a maximum range of about 150 m.

Hydroseeding is a relatively fast operation since seed, mulch and fertilizer are applied in one step. Between 4000 and 20,000 m² can be hydroseeded by one unit each day, depending on site conditions.

MAINTENANCE

During the first year after seeding, it is necessary to water and fertilize according to weather and soil conditions. Water application rates should be heavy but controlled to prevent runoff. Fertilizer will need to be applied only if it was not adequate at the time of seeding.

Small areas of failure must be reseeded promptly. If larger areas of failure occur, the method of hydroseeding should be re-evaluated.

SPECIFICATIONS

1. Seed, mulch, and fertilizer application rates will depend on site conditions. (see Erosion Control Standards 1 and 2 for Seeding and Mulching).

2. If seeding with legumes, the bacterial innoculant will need to be applied at 4 times the normal rate.

3. The slurry shall be applied to the area to be re-vegetated in a layer 0.2 to 2 cm thick. In rocky areas and areas with little topsoil, the layer may be thicker. If more than one application is necessary the first layer shall be dried or settled before the second layer is applied.

4. Hydroseeding shall not be permitted during periods of heavy rain, strong winds or frost.
EROSION CONTROL STANDARD 4
SODDING

INTRODUCTION
Sodding refers to the use of permanent grass sod to cover and stabilize disturbed areas. It is used to rapidly establish plant cover in areas where complete cover of the soil surface is required without delay or where seeding may not be practical (i.e. drainage ways) to establish grass. The use of sod is generally much more expensive than seed; however, it has an immediate effect.

APPLICATION
Sod may be used to protect graded surfaces from water and wind erosion where adequate topsoil or fertilizer and water can be provided. It is best used for areas that are steep or require immediate protection, or at locations where aesthetic considerations are a priority. Sod may be maintained or left unmanaged.

DESCRIPTION
Sod may be Nursery or Field Sod. It may be composed of one or more species/cultivars of grasses and may contain associated plants such as legumes. Field Sod is sod not specifically produced for sale as turf and is generally not certified as to composition or degree of weed infestation.

INSTALLATION
Site Preparation
Sod must be laid on fine-graded areas where close and complete contact between the sod roots and the soil/substrate surface can be maintained. The surface must be clear of debris, stones, plant remains, trash and other objects greater than 5 cm in diameter. The surface must be graded smooth and be free of air or water pockets.

Before sod is laid, a soil test should be completed to determine the nutrient and pH requirements. Soil tests may be conducted in the field using an appropriate soil testing kit. However, it is preferable to have the soil tested by a soil testing laboratory. The soil test consists of a sample from the top 10 cm of the final graded substrate including any additional incorporated topsoil.

Where a soil test is not feasible, a fertilizer of ratio 1:4:4 N-P-K should be applied at a rate of 0.45 to 0.68 kg of nitrogen/100 m². Soil amendments must be incorporated into the top 7 to 15 cm of the soil/substrate surface using normal agricultural tillage practices. The site must be fertilized within 48 hours of prior to laying the sod.

Sod should not be laid on sites without topsoil. Topsoil should be spread evenly across the site to a depth of 7 to 15 cm and incorporated into the surface of the substrate by discing or cultivating.
Installation

Successful installation requires the use of freshly cut healthy sod. Sod must not be laid on frozen ground surfaces. During dry, hot periods, the ground surface must be cooled by irrigation before the sod is laid. Sod must be rolled or tamped firmly to ensure good soil contact. Freshly installed sod must be irrigated to moisten soil to a minimum depth of 10 cm.

The installation of sod on steep or potentially unstable slopes requires that sod stripes be placed with the long axis perpendicular to the fall of the slope. Sod must be placed such that all joints form an interlocking pattern of strips across the slope. Each sod strip must be pegged with a suitable wooden stake or metal staple 15 to 25 cm long inserted flush with the sod surface, using one stake or staple on center every 60 cm (see Figure 1).

Figure 1: Sodding

MAINTENANCE

Sod should be maintained by fertilizing, irrigating, mowing and weed control depending on location and plan. Sod shall be irrigated to maintain field capacity moisture levels to
a minimum depth of 10 cm for the first week after installation. It should be fertilized as indicated by the soil test or the following schedule may be used:

<table>
<thead>
<tr>
<th>Time</th>
<th>Nitrogen</th>
<th>Phosphorous</th>
<th>Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Spring</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Early Summer</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mid Summer</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Early Fall</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Sod that is to be maintained by mowing shall not be mowed within two weeks after installation. Afterwards, it shall be mowed systematically throughout the growing season beginning in the spring after the grass is 6 to 8 cm high and ceasing when cold weather in the autumn restricts growth. No more than 35 to 40 per cent of the shoot shall be removed at any one cutting; turf grass is maintained best at between 3 to 7 cm in shoot height. Grass clippings should remain on the sod after mowing unless they accumulate at greater than 1 cm depth when they should be removed.

Weeds may be controlled in sod that is to be mowed or left unmanaged according to accepted horticultural practices.

**SPECIFICATIONS**

Nursery sod or field sod may be used to control erosion:

**Nursery Sod**

1. If nursery sod is used, it shall meet the requirements of the Canadian Nursery Trades Association for No. 1 Kentucky Bluegrass cultivars. It shall be cut from a stand two years of age and shall be weed-free (no more than two broad-leaved weeds or ten other weeds/40 m²). Sod mixes in or adjacent to natural areas should be reviewed by Park Development & Operations to ensure that undesirable species are not unintentionally introduced.

2. The mowing height limit shall be 3.5 to 6.5 cm.

3. The soil portion of the sod shall not exceed 4.0 cm.

4. Sod shall be cut from fertile, loamy soil, be well-rooted, disease-free and of uniform texture. It should not be lifted during excessively hot, dry periods and should be moist enough to remain viable during storage, transport and installation.
5. Sod shall be cut to standard dimensions or as required by the planting plan. (Standard dimensions are approximately 40 cm wide by 200 cm long to form 0.8 m² coverage).

6. Sod shall be rolled unless otherwise specified and shall be in a condition such that it may be handled and installed without tearing or breaking.

7. Sod shall be harvested within 36 hours preceding installation.
EROSION CONTROL STANDARD 5
RIP-RAP

INSTALLATION
Rip-rap made up of large, loose angular stones will provide a durable erosion resistant ground cover. The purpose of placing rip-rap is to:

i) protect the soil surface from erosive forces;
ii) slow the velocity of runoff; and
iii) stabilize slopes

APPLICATION
Stone rip-rap is durable, heavy and flexible and is the most popular material used in constructing revetments. The popularity is due to the fact that rip-raps are flexible as the stone rip-rap adjusts to changes resulting from erosion beneath the stone and the rough surface of the stones dissipate part of the energy of the flowing water. The most common locations for rip-rap are stream channel banks, slopes of dikes, inlet and outlet structures carrying water and bridge abutments.

INSTALLATION
Where erosion potential is high, rip-rap should be placed as soon as possible after the soil has been disturbed. For inlet or outlet protection, rip-rap should be placed before the flow has an opportunity to create erosion. See Section D BMP Specification Details.

SPECIFICATIONS
Rip-rap shall be made up of a graded mixture such that 50 per cent of the mixture by weight shall be larger than the d50 size selected by the designer. The largest size shall be 1-1/2 times the d50 size while the smallest size shall be approximately 2 cm. The designer should be aware that smaller sizes of rip-rap are more vulnerable to vandalism.

The minimum thickness of the rip-rap layer shall be 1-1/2 times the maximum stone diameter, but not less than 15 cm.

For flow stabilization projects, the angle of repose of the rip-rap stones shall be greater than the slopes to be protected. A practical maximum slope for rip-rap is 2H:1V.

Filter blankets, which are placed between rip-rap and the soil to be protected, are made up of gravel or man-made filter cloth. The function of the filter layer is to:

i) separate the soil from the rip-rap;
ii) redistribute the forces acting on the soil;
iii) provide drainage facilities
The erosive force of flowing water is greater in bends than in straight channels. Therefore, rip-rap sizes for bends should be larger.
EROSION CONTROL STANDARD 6
AGGREGATE COVER

Aggregate refers to the use of crushed stone or gravel applied directly to the soil surface. Aggregate secures the soil, reduces erosion and provides a continuous all-weather cover.

APPLICATION
Aggregate as a cover may be used to stabilize soil surfaces and to reduce erosion by construction traffic (especially during wet weather), in wet areas or on slopes. It is used to stabilize large, flat disturbed areas where the site is being prepared for paving or where the use of vegetation is not feasible (such as on a temporary roadway parking area). The use of aggregate to reduce erosion of permanent roadways during construction helps to minimize the amount of regrading necessary between the initial grading and permanent stabilization. A granular blanket of aggregate placed evenly over the surface of slopes will stabilize erosive soils. It is particularly suitable for areas where ground water emerges through the surface soil. The granular blanket of aggregate provides a stable, free-drainage slope material.

INSTALLATION
When aggregate is used as a means of erosion control on temporary access roads and parking areas, the roadbed or parking area surface shall be cleared of all objectionable material, including all vegetation and roots. Grades should be sufficient to provide adequate drainage. The contour of the natural terrain should be followed to the maximum extent possible. For quick stabilization, aggregate should be applied immediately after the sites have received their initial grading.

Where aggregate is used as a means of slope erosion control, the erosive soils must be prepared and smoothed so that the stones will remain in place. Aggregate must be placed evenly over the surface to provide a stable, free-draining slope material.

MAINTENANCE
Periodic improvements with new gravel, usually a top dressing, may be required on temporary and permanent roadways and on parking areas. Slopes should be checked for washouts after storms. Any damage must be quickly repaired.

SPECIFICATIONS
1. On temporary roadways and parking areas, a 15 cm to 20 cm course of crushed granular aggregates shall be applied to the site immediately after grading.

2. Crushed aggregates shall consist of 20 mm crushed rock or gravel composed of hard, durable, uncoated, cubical fragments.

3. Crushed aggregates composed of crushed slag produced from iron blast furnace slag or blended nickel slag shall not be used as a means of erosion control in or
near a watercourse or on steep or wet areas, including slopes, due to the potential for heavy metal contamination.

4. On slopes of erosive soils, the granular blanket shall be 3 cm to 5 cm thick and be composed of granular aggregate material such.

5. Granular aggregate shall be composed of clean, hard, durable uncoated particles.

6. Granular aggregate shall **not** be composed of mine waste, iron blast furnace slag, or blended nickel slag or clinkers due to the potential of ground water contamination from materials contained in the aggregate.
INTRODUCTION

Chemical stabilization refers to the use of chemical substances that change the properties of the soil surface, generally by aggregating the finer soil particles. Soil stabilizers, of a chemical nature, are used in place of temporary mulch materials and in combination with mulch materials to act as both a mulch tack and a soil blender.

APPLICATION

Chemical soil stabilizers are used for erosion protection of exposed soil slopes not subject to traffic during the temporary establishment of a seedbed. Chemical stabilizers can also be used to provide temporary erosion protection before re-vegetation is started. It is advantageous to use chemical soil stabilizers in areas where the use of vegetation as a soil stabilizer is not possible.

The liquids are generally applied to recently exposed soil to increase cohesion of the surface. This helps the development of a permanent vegetative cover by reducing erosion and retarding drying. Chemical soil stabilizers generally work best on a dry, highly permeable soil, or on soils already in place which are subject to sheet flow rather than concentrated flow.

Long-term protection is not achieved by chemical soil stabilizers. As a result, this method of stabilizing soils should be viewed as being only temporary. However, on light, sandy substrates, an improvement of the soil nutrient and water supply can be achieved through the use of hydrosilicates.

DESCRIPTION

A long lasting effect of up to two years can be obtained if the material is repeatedly sprayed, higher concentrations of the material are used, or if the granules are worked into the soil. However, re-vegetation of these areas may no longer be possible as the seeds may be prevented from germinating. In areas that suffer from frost, crust-forming stabilizers such as bitumen cannot be used as cracks develop and the surface breaks into pieces. Table 1 lists chemical soil stabilizers.
Table 1: Chemical Soil Stabilizers

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginate</td>
<td>Paste-like emulsion or granulate produced from sea algae and consisting largely of natural carbohydrates with associated mineral added.</td>
</tr>
<tr>
<td>Aquatain</td>
<td>Water dispersible, non-toxic.</td>
</tr>
<tr>
<td>Asphalt Sprays</td>
<td>Available as an asphalt emulsion or as a liquid asphalt.</td>
</tr>
<tr>
<td>Bitumen</td>
<td>Thick-flowing undilutable emulsion or a cold emulsion, 50% dilutable with water.</td>
</tr>
<tr>
<td>DCA-70</td>
<td>Water dispersible, non-toxic, non-phytotoxic.</td>
</tr>
<tr>
<td>Hydrosillicates</td>
<td></td>
</tr>
<tr>
<td>Methylcellulose</td>
<td>Gel-like elastic film in a powder form or as a water based emulsion.</td>
</tr>
<tr>
<td>Plastic Emulsion</td>
<td>Usually a liquid which can be diluted with water, producing a thin film to cover the surface of the soil.</td>
</tr>
<tr>
<td>Polyvinyl Alcohol</td>
<td>An emulsion with water.</td>
</tr>
</tbody>
</table>

**INSTALLATION**

Application of the liquids is usually conducted with standard hydroseeding equipment or coarse pressure spraying nozzles. Asphalt sprays and rubber emulsions can be applied using non-air entraining equipment.

It is recommended that a representative plot be tested with the chemical soil stabilizers so that the correct mixture and application rate of chemicals and water can be selected.

**MAINTENANCE**

The period of effectiveness lasts from a few weeks to half a year. It will be longer where hydrosillicates are used and where granules are worked into the soil. Repetitive spraying will prolong the effect.

**SPECIFICATIONS**

All chemical soil stabilizers should be applied at the manufacturer’s approved rates.
EROSION CONTROL STANDARD 8
NETS AND MATTING

INTRODUCTION
Nets and matting are placed on the ground surface to stabilize the soil. They may also be used in combination with mulch materials. Generally, nets and mats are inexpensive, easily placed and not subject to windblow providing they are properly anchored.

APPLICATION
Mats used without other stabilization techniques are suitable for use on level areas, in waterways, or on slopes. Primary use is on steep slopes and where newly established vegetation in swales and channels requires protection. Matting is used in areas where soil moisture is high, as soil moisture is not retained by the nets or mats. Mats can also be applied to areas where high velocity from runoff tends to scour newly established or establishing vegetation. When used in a combination with mulch materials, mats act as an anchor binding the mulch material and preventing windblow.

DESCRIPTION
Net and mat materials include jute, twisted paper mesh, fiberglass, cotton, finely woven plastics, excelsior and woven metal wire. Staples, usually made of plain iron wire, are used to hold the mats in place.

INSTALLATION
Obtaining a firm, continuous contact between the soil surface and the mat is the most important aspect to consider during installation. Failure to maintain contact renders the process useless and results in further erosion. The area that is to be protected should be shaped or graded to provide a good surface for mat placement. Material that prevents good contact between the mat and the soil surface, such as rocks or debris larger than 4.5 cm in diameter, must be removed.

The mat should be laid from the top of the slope and allowed to roll down the slope. It should be placed loosely over the soil. Stretching of the mat should be avoided. Refer to Figure 2.

When the mat has been stapled and the seed has been applied, the mat should be rolled to make certain there is good contact between the mat and the soil. See Section D BMP Specification Details (Hillside Blanket Installation).

NOTE: If seeding is required, the site must be seeded before installation of the nets or mats, unless seed is imbedded directly in the nets or mats.
MAINTENANCE
The protected area should be regularly inspected, especially after a rainfall, to check for mat separation or breakage. If breakage does occur, any damage should be repaired immediately.

Temporary inspection should continue until the grasses have become well established. After a year, a top dressing of fertilizer may be applied to improve the vegetation covering and assist degradation of the temporary matting.

SPECIFICATIONS
1. In areas where the soil is highly erodible or when mulching is carried out in summer or late fall, mats shall only be used with an organic mulch.

2. Mats shall be installed over the mulch, except if the mulch is wood fiber. Wood fiber may be applied over the installed mat.
3. Excelsior matting may be used at all times of the year and may be applied alone on erodible soils, as they are considered to be protective mulches.

4. The ends of the mat shall be buried in a trench at least 15 cm deep, at the top of the slope. Earth shall be tamped over the anchor slot and staples shall be applied every 30 cm across the top and every 1 m along the mat edge.

5. The adjacent edges of two adjoining mats shall be overlapped 10 cm and stapled together.

6. Staples shall be applied at 1 m intervals down the center of the mat.

7. In areas where strips are to be joined, a new roll of mat shall be inserted into an anchor slot, in the same manner as the up-slope end. The end of the previous mat shall overlap the new mat by 50 cm and then it shall be turned under 15 cm.

8. Staples shall be applied every 30 cm across the end of the roll at the end of the turned-under mat, just below the trench or anchor slot.

9. At the bottom of the slope, the mat shall be led out to a level area before it is anchored and the ends turned under 15 cm. Staples shall be applied every 30 cm across the end.

10. Erosion check slots shall be made on areas that are highly erodible or where the slopes exceed 4H:1V. A fold of mat shall be inserted into a trench or anchor slot every 5 m and tamped firmly. Staples shall be applied every 1 m across the downstream portion of the mat.

11. Staples will be made of 4 mm diameter, or heavier, plain iron wire and will be at least 15 cm in length.
EROSION CONTROL STANDARD 9
TREES AND SHRUBS

INTRODUCTION
Trees and shrubs are forms of vegetation that can be used to cover and stabilize disturbed areas as well as to prevent the initiation of erosion. They form a canopy above the ground and thus protect the soil surface from the full impact of falling rain and high winds. When the stand is well established a layer of litter also covers the ground and, with decomposition, increases the soil absorption capacity. Trees, particularly evergreens, will slow down the melting of snow and runoff in the spring. The roots of shrubs and trees, however, are not as effective as grass roots in holding the topsoil against high velocity surface runoff.

Herbaceous vegetation provides erosion control more quickly. Time is needed to establish a good stand of woody species, during which competing herbaceous vegetation must be controlled.

Planting of very large woody stock is expensive and not necessarily effective sooner than planting of smaller and better-balanced stock. Hand planting of large and difficult areas can also be expensive. However, maintenance of established stands can also be expensive.

APPLICATION
Trees and shrubs may be used to protect graded or cleared areas from water and wind erosion where adequate topsoil is available and where a permanent vegetative cover other than herbaceous species is wanted. They are best used on steep or rocky slopes where mowing is not feasible, in shady areas where herbaceous species experience difficulty, and where forestry, landscaping and wildlife features are desired.

Trees and shrubs will help control foot traffic, will not require as much maintenance as mowed lawns, and will be more attractive than unmowed grass cover. However, these plants cannot prevent soil slippage on a soil that is not stable due to its texture, structure, water movement or excessive slope.

DESCRIPTION
Species Selection
A wide range of trees and shrubs can be grown in Alberta. While cost and availability are important, the choice of species should be based on a range of criteria including winter hardiness, tolerance to soil and air conditions, and suitability of planting.

In general, the choice of species narrows as the planting site becomes drier, less fertile and colder. Since erosion-prone soils are often dry and infertile as well as unstable, the site should be carefully inspected before the final section of species. Examples of such species include, but are not limited to: Alnus, Cornus, Elaeagnus, Hippophae, Salix, Sherpherdia, and many others. Though able to grow in soils poor in nitrogen, these
plants exhibit various tolerances to other site factors such as climate, soil pH, soil moisture, root competition and shade.

Species with the ability to spread over large areas by suckering may or may not be desirable. These types of species would include the genera Caragena, Cotoneaster, Cornus, Elaeagnus, Populus (Aspen section), Rosa, Salix, Spirea, and Symphoricarpos.

Most deciduous species that are not nitrogen-fixing are rather demanding in site requirements. For best growth they require a deep, uneroded, fertile, moist but well-drained soil. Coniferous species such as spruce (Picea) are more adaptable to areas of dry, exposed slopes or shallow topsoil. Grasses and shrubs are more adaptable to dry slopes while spruce in best utilized on shaded, cooler slopes.

In general, species that are native to the area can be expected to be winter hardy. Winter hardiness zones, based mainly on minimum water temperatures, have been published for many species that are available in Alberta. These zones can be used as a guide when selecting among exotic species. Table 2 lists native trees and shrubs that are suitable to Calgary’s climate.

### Table 2: Native Trees and Shrubs

<table>
<thead>
<tr>
<th>Latin name</th>
<th>Common name</th>
<th>Moisture Regime</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aquatic</td>
<td>Emergent</td>
</tr>
<tr>
<td>Trees and shrubs</td>
<td></td>
<td>upland</td>
<td>upland</td>
</tr>
<tr>
<td><em>Alnus crispa</em></td>
<td>green alder</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Amelanchier alnifolia</em></td>
<td>saskatoon</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Betula occidentalis</em></td>
<td>water birch, black birch</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cornus stolonifera</em></td>
<td>red osier dogwood</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Elaeagnus commutata</em></td>
<td>silver-berry; wolf willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Juniperus communis</em></td>
<td>common juniper</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Juniperus horizontalis</em></td>
<td>horizontal juniper</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Picea glauca</em></td>
<td>white spruce</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Populus tremuloides</em></td>
<td>trembling aspen</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Populus balsamifera</em></td>
<td>balsam poplar</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Potentilla fruticosa</em></td>
<td>shrubby cinquefoil</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Prunus virginiana</em></td>
<td>western chokecherry</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Pseudotsuga menziesii</em></td>
<td>douglas fir</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ribes aureum</em></td>
<td>golden currant</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ribes lacustre</em></td>
<td>bristly black currant</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ribes oxyacanthoides</em></td>
<td>wild gooseberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Rosa acicularis</em></td>
<td>prickly rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Rosa arkansana</em></td>
<td>prairie rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Rosa woodsii</em></td>
<td>common wild rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin name</td>
<td>Common name</td>
<td>Moisture Regime</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td>wild red raspberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix amygdaloides</td>
<td>peach-leaved willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix bebbiana</td>
<td>beaked willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix discolor</td>
<td>pussywillow; diamond willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix exigua</td>
<td>sandbar willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix glauca</td>
<td>smooth willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix lutea</td>
<td>yellow willow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sambucus racemosa</td>
<td>elderberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shepherdia argentea</td>
<td>silver/thorny buffaloberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shepherdia canadensis</td>
<td>canada buffaloberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiraea betulifolia</td>
<td>white meadowsweet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphoricarpos albus</td>
<td>snowberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphoricarpos occidentalis</td>
<td>buckbrush/wolfberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum edule</td>
<td>low bush cranberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>high bush cranberry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Planting Stock**

The success of any planting will also largely depend on the quality and suitability of the planting stock. Good stock should be sturdy and have a well-branched root system.

When planting larger areas, it is usually best to use young plants grown in the nursery for only a few years. Young plants include rooted cuttings, seedlings (plants grown for 1 to 3 years from seed), transplants (seedlings that have been transplanted once) or small trees and shrubs 1 to 3 m tall.

Larger stock for landscaping purposes may sometimes be needed, but this is more expensive and must be well cared for during the first few years. The best survival and growth will be shown by young stock that is relatively large for its age.

Seedlings and transplants are normally purchased bare-root (where soil is not kept around the roots) and the plant must be moved while the buds are completely inactive.

However, trees 1 to 2 m in height should have soil kept around the roots in a root ball, either tied around with burlap (as balled and burlapped stock) or in a fiber or plastic pot (as containerized stock). Some species may be established by the use of unrooted cuttings or by root cuttings (Populus, Salix).

A wider range of trees and shrubs are available from commercial nurseries. Wild plants may also be dug carefully and replanted on the property but this may be risky. Root pruning one or two years before digging may help encourage the growth of new roots.
Small, shallow rooted deciduous trees growing in a clay loam soil are most easily transplanted.

**INSTALLATION**

**Site Preparation**

Site Preparation is essential for planting most deciduous species. It may be in the form of complete or partial cultivation or chemical eradication of competing vegetation.

Ploughing and tilling of the total plantation area the year before planting is the best method of site preparation. However, in erodible soils, strips up to 2 m wide may be ploughed along the contour and the trees planted in the overturned soil. In erodible soils, trees are typically planted by hand. Chemical site preparation either before or after planting can be used in place of mechanical site preparation on stony, hilly or other areas not suited to ploughing and cultivation. Small areas can be prepared by hand scalping the sod with a shovel.

Very poor and sandy soils may not grow a very thick stand of herbaceous weeds. Site preparation is not necessary on such sites and appropriate woody species can be planted directly into the sod. Soil amendments and fertilizer can be applied at rates suggested by a soil test. Approval from Park Development & Operations is required for soil amendments and fertilizer requirements in ER and natural areas.

**Planting**

The best time to plant is in early spring, as soon as possible after frost leaves the ground. Planting in the fall is more risky as the plants may be heaved by frost if the roots are not established. However, it may be more convenient to fall plant deciduous species that flush very early in spring. Planting should be done when the plants are dormant.

Trees should be planted from 1.5 to 3 m apart. Shrubs may be planted at a spacing of 0.5 to 1.5 m. Spacing for native or wild plant material should be the same or similar to the existing conditions that are being replicated.

**Small Stock**

Planting stock under 1 m in height is usually planted by hand on steep or stony sites or on areas needing fewer than 4000 trees. Hand planting involves making a hole with a hand shovel, placing the tree in the hole so that the roots are well extended below ground level with the stem upright above ground level, and packing the soil back firmly around the roots with the heel. Water as required to ensure plants do not dry out.

When larger numbers of plants are needed and gradients are accessible, a tractor-drawn planting machine with a two or three man crew can be used. The machine cuts a trench or ploughs a furrow for the tree, and firms the soil back around it with packing wheels. Machine planting is faster than hand planting, but care still needs to be taken to ensure that trees are inserted upright at the correct level, with roots well spread out.
If no planting machine is available, a furrow may be ploughed with standard agricultural equipment. Trees can then be planted and soil packed back around the roots manually. Plants should be planted with topsoil around the roots rather than with roots going directly into the subsoil.

**Larger Stock**

Plants 1 to 2 m tall are usually planted by hand. A motorized post-hole digger, either hand-carried or tractor mounted, can be used on relatively stone-free sites to reduce the amount of hand digging. A backhoe is helpful for planting the largest stock.

Whenever possible, topsoil mixed with better quality subsoil should be used in the planting hole. If topsoil is unavailable, the subsoil can be improved by mixing in 1/3 by volume of peat moss, composted manure, cocoa shells or well-rotted sawdust. About 0.03 kg of a complete fertilizer such as 10–10–10 N-P-K per plant should then be added to the mixture going into the planting hole. Final depth of planting should be close to the original depth of the plant.

With containerized stock, containers must be removed completely before planting. For balled and burlapped stock, any rope around the trunk is cut and removed after the tree has been placed in the hole. The burlap should be loosened and removed if practical, without breaking the soil of the root ball. After the hole is half-filled with soil, the soil should be packed firmly around the root ball. Water should be added to settle the soil and eliminate air pockets. When the water has drained off, the remainder of the hole can be filled and the soil packed as before. Extra soil can be used to form a shallow basin around the tree for holding irrigation water.

Any corrective pruning should be done at the nursery prior to transportation to the planting site. If roots are broken or damaged, the tops of deciduous trees may be cut back to balance the root system. The leader on evergreens should remain untouched.

Where practical, steep slopes should be covered with a protective mulch such as wood chips or straw to conserve moisture and control erosion. If fresh organic matter is used as a mulch, a slow release fertilizer (or an organic form) should be added as well.

A temporary cover crop of non-competitive annuals can be used as an alternative erosion control (but not with small woody seedlings) until planted materials offer protective cover. Where erosion hazard is very high, heavy jute netting or landscape mats of excelsior or fiberglass can be pegged to the slope.

**MAINTENANCE**

Staking on the side of the plant is necessary for trees over 1 m tall to prevent excessive swaying. A wooden or metal stake is driven firmly into the ground close to the tree and attached to the trunk by a commercial tie or a length of wire passed through a piece of rubber hose. Ideally, young trees should receive about 2.5 cm of water each week for the first two years after planting. When rain does not supply this need, the trees should
be watered deeply but not more than once per week. This is essential for larger stock in the first year.

On good soils, weed control is more important than fertilization for small trees and shrubs because fertilized weeds may suppress the newly planted material through root competition or by faster growth. Weeds must be controlled by either careful cultivation, herbicides or mulching around the tree for the first few years after planting. Poor soils can be fertilized according to soil test results.

Girdling by mice and browsing by ground squirrels and rabbits can cause heavy damage, particularly in deciduous plantations near grassy areas, old windrows, young evergreen plantations or natural cedar stands. Many shrubs are able to recover by sprouting more stems. Trees can be protected by wrapping the trunk with a commercial metal or plastic tree guard from ground level up to a height of 1 m.

Staked trees should be checked before winter for two years to make sure the ties and wire are still secure. After two or three years, ties and stakes should be removed. Tree guards should also be checked in the fall to make sure they remain in place without damaging the trunk.

Health and survival of plants should be checked the first fall or the following spring. If the survival rate is low, dead plants can be replaced by replanting. As trees grow older, little maintenance is needed. Some corrective pruning may be necessary, depending on the objectives of the planting. Limbs should be removed to avoid weak, narrow-angle crotches. Some thinning out of shrub stems may be helpful in rejuvenation and attaining a good form of growth. Damaged or dead wood should always be removed.

Trees over 15 years old may need to be thinned or spaced if there is no natural dying off of the weaker specimens.

Plantations that are too thick will stagnate in growth and the health of individual trees will be weakened. Thinning will also promote the development of a soil-protecting understorey that would not occur in dense shade.

**SPECIFICATIONS**

**Planting Stock**

1. Nursery stock shall be true to name, and of the size or grade stated. Sufficient labels or markings shall be used.

2. Nomenclature used shall conform to the latest rules of International Code of Nomenclature for Cultivated Plants.

3. Quality shall be normal for the species when grown under proper cultural practices. All nursery stock shall be viable, substantially free from pests and disease, and undamaged. Roots shall not be subject to long exposure to drying
winds, sun or frost, between digging and delivery. Root balls shall be free from pernicious weeds such as crabgrass, horsetail and bindweed.

4. Packing or wrapping shall be adequate for the protection of the stock and sufficient to prevent heating or drying out during storage and transportation.

5. All normal quality nursery stock shall have an adequate fibrous root system clean cut at the ends. Split roots are not acceptable. Pertinent facts, such as when larger stock was transplanted or roots pruned, should be available.

6. Material dug from native stands or woodlots shall be designated as “collected”. Locally sourced material should be appropriate to the site conditions.

**Handling**

1. Plants must be protected at all times from exposure to sun and drying winds by keeping the roots covered with moist material. Plants shall be shaded at all times between digging and planting.

2. Plants should be packed and tied tightly to prevent them from moving about and being damaged during transport.

3. Balled material must not be set on a concrete floor since earth balls will give off excessive moisture to the concrete and the roots will be damaged. Burlap balls should be laid on a sheet of polyethylene.

4. Plant material shall be handled as living material and not tossed around carelessly.

5. The time between digging and replanting shall be reduced to a minimum.

6. Plants that cannot be planted quickly shall be heeled in by placing the roots in a trench, inclining the stems at an angle of 45 degrees or lower and covering the roots with soil. The soil covering the roots must be kept wet.
EROSION CONTROL STANDARD 10
GRASSED WATERWAYS

INTRODUCTION
Grassed waterways are broad and shallow channels, stabilized by suitable herbaceous vegetation, that are designed and constructed to carry concentrated flows of surface water across land to a drainage outlet. The purpose is to convey runoff without causing erosion damage. The flow is retarded by the shallow grade, the wide channel and the vegetation growing in it. With favorable soil conditions grassed waterways can generally handle water velocities up to 1.8 m/s. See Table 3 for maximum velocities and channel slope.

APPLICATION
Grassed waterways may be used where added channel capacity or stabilization is required to control erosion resulting from concentrated runoff. They should be used where channels of the proper grade can be constructed, vegetated and maintained to achieve the required control. They are often constructed in natural draws across farm fields where water naturally collects and flows to an outlet.

Table 3: Permissible Velocities in Earth and Grass-Lined Channels

<table>
<thead>
<tr>
<th>Soil Types</th>
<th>Permissible Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m/s)</td>
</tr>
<tr>
<td>Fine Sand (noncolloidal)</td>
<td>0.8</td>
</tr>
<tr>
<td>Sandy Loam (noncolloidal)</td>
<td>0.8</td>
</tr>
<tr>
<td>Silt Loam (noncolloidal)</td>
<td>0.9</td>
</tr>
<tr>
<td>Ordinary Firm Loam</td>
<td>1.1</td>
</tr>
<tr>
<td>Fine Gravel</td>
<td>1.5</td>
</tr>
<tr>
<td>Stiff Clay (very colloidal)</td>
<td>1.5</td>
</tr>
<tr>
<td>Graded Loam to Cobbles (noncolloidal)</td>
<td>1.5</td>
</tr>
<tr>
<td>Graded Silt to Cobbles (colloidal)</td>
<td>1.7</td>
</tr>
<tr>
<td>Alluvial Silts (noncolloidal)</td>
<td>1.1</td>
</tr>
<tr>
<td>Alluvial Silts (colloidal)</td>
<td>1.5</td>
</tr>
<tr>
<td>Coarse Gravel (noncolloidal)</td>
<td>1.8</td>
</tr>
<tr>
<td>Cobbles and Shingles</td>
<td>1.7</td>
</tr>
<tr>
<td>Shales and Hard Pans</td>
<td>1.8</td>
</tr>
<tr>
<td>Channel Slope</td>
<td>Grass Types</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%</td>
<td>Reed canarygrass**</td>
</tr>
<tr>
<td></td>
<td>Tall fescue</td>
</tr>
<tr>
<td></td>
<td>Kentucky bluegrass</td>
</tr>
<tr>
<td></td>
<td>Grass-legume mixture</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red fescue</td>
</tr>
<tr>
<td></td>
<td>Redtop</td>
</tr>
<tr>
<td></td>
<td>Small grains (temporary)</td>
</tr>
<tr>
<td></td>
<td>Streambank western wheatgrass</td>
</tr>
<tr>
<td></td>
<td>Slender wheatgrass</td>
</tr>
<tr>
<td></td>
<td>Flowl bluegrass</td>
</tr>
<tr>
<td></td>
<td>Hair grass</td>
</tr>
<tr>
<td>5-10%</td>
<td>Reed canarygrass**</td>
</tr>
<tr>
<td></td>
<td>Tall fescue</td>
</tr>
<tr>
<td></td>
<td>Kentucky bluegrass</td>
</tr>
<tr>
<td></td>
<td>Grass-legume mixture</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater than 10%</td>
<td>Reed canarygrass**</td>
</tr>
<tr>
<td></td>
<td>Tall fescue</td>
</tr>
<tr>
<td></td>
<td>Kentucky bluegrass</td>
</tr>
</tbody>
</table>

* For highly erodible soils, decrease permissible velocities by 25%  
** Potentially invasive species; obtain approval from Park Development & Operations for applications on public land.

**DESCRIPTION**

Grassed waterways are generally parabolic in cross section but can also be trapezoidal. They should be nearly flat bottomed. Constructing the waterway too deep, too narrow or v-shaped may lead to gully formation. Waterways can be designed to accommodate various grades. Ideally, the slope of the channel bottom should be about 1% (1 m fall per 100 m of channel length). Slopes of grassed waterways should also be about 1%. Grassed waterways should be constructed with shallow grades to conduct the water slowly across the land. The herbaceous vegetation in the channel retards the flows and resists the soil-eroding action of the water. Each waterway should have a stable outlet that must discharges without causing erosion.
Subsurface drainage should be provided for sites having high water table or seepage problems. A drainage tile (weeping tile or french drain) beneath the grassed waterway will drain residual water, providing a channel that dries quickly after both spring runoff and summer storms.

Drainage tile beneath a waterway can also be sized to take part of the channel flow, thus reducing the required capacity and size of the waterway. Water can be allowed to enter tile catch basins intercepting the channel flow at critical points along the waterway.

The cost of a drainage tile installation for this purpose must be weighed against the accommodation of a wider channel. To some extent, a stone center is an alternative to a subsurface drain (see Figure 3).

**Figure 3: Grassed Waterways**

WITH STONE CENTRE

WITHOUT STONE CENTRE
INSTALLATION
The outlet should be constructed and stabilized prior to operation of the waterway. Two basic outlets at a ditch are a rock chute spillway and a drop inlet back from the ditch bank.

Late spring and summer are good times for construction of a grassed waterway as the soil can generally be easily worked and grass seed will catch easily. A dry period must be chosen for poorly drained areas. All stones, stumps and obstructions should be removed from the path the waterway will follow. The path itself should be staked for construction.

It is preferable to use grading equipment to excavate or shape to line, grade and cross section as required to meet criteria. A plough can be used to throw furrows toward the center if the proposed waterway is gullied.

The waterway should be free of bank projections or other irregularities, which will impede normal flow. The entire channel should be smoothed and compacted to prevent unequal settlement. Topsoil should be stockpiled and re-spread where necessary to provide a good seed bed. Adequate fertilizer must be applied for grass establishment.

One mixture currently recommended for seeding in grassed waterways includes bird’s-foot trefoil at 12 kg/ha and creeping red fescue at 20 kg/ha. Other possible species include brome grass, Kentucky bluegrass and white Dutch clover. Reed canarygrass survives poor drainage conditions but may clog the channel, causing sediment deposition.

Immediate protection in critical areas can be provided by sodding. However, a mulch may be used to protect the waterway until the vegetation becomes established. Refer to Erosion Control Standards 1 and 4 for Seeding and Sodding.

MAINTENANCE
Regular maintenance is important to keep a waterway in good working condition. Bare or eroded spots should be quickly sodded or reseeded. Fertilizing and mowing or spraying for weed control should be done frequently enough to keep the vegetation in vigorous condition.

Hay may be harvested. Grazing is permitted for short periods of time only, but not during wet conditions. Grassed waterways should not be used as travel lanes either for cattle or machinery in order to prevent the development of gullies.

SPECIFICATIONS
The design of grassed waterways depends greatly on:

a) Water flow (m$^3$/s)
b) Velocity (m/s)
c) Slope grade (%)
d) Type and maintenance of vegetation and soil

Detailed tables are available for calculating the top width and the depth of a parabolic waterway from the above information. Top width increases directly with water flow and grade but decreases with increased velocity. Channel depth does not change much with water flow but decreases with increased velocity and decreases with increased grade.

1. The waterway outlet shall be constructed and stabilized first.

2. The grassed channel shall not be less than 5 m in width or less than 0.15 m in depth.

3. The design water surface elevation of the waterway should be equal to or less than the design water surface elevation of diversions or other tributary channels contributing water flow.

4. The side slopes shall rise no more than 1 m vertically to 4 m horizontally (4H:1V). Flatter side slopes will permit easier crossing of the channel by machinery and are preferable. 4H:1V side slopes allow for tractor mowing along the slope.

5. To control meandering low flows, the top width of parabolic waterways should not exceed 9 m and the bottom width of trapezoidal waterways should not exceed 4.5 m unless multiple or divided waterways, stone center, or other means are provided.

6. The entire channel should be smoothed and compacted to prevent unequal settlement.

7. The site should be prepared according to Erosion Control Standards 1 and 4 for Seeding and Sodding.

8. If seeding is done, it should be carried out with a suitable seed mixture within 24 hours after construction on the freshly worked, moist soil.
EROSION CONTROL STANDARD 11
STORMWATER CHANNELS AND DITCHES

Stormwater channels are watercourses designed to safely convey excess stormwater runoff from the developing area. These channels shaped and lined with vegetation or structural material will ensure that the concentrated surface runoffs from the site will be conveyed without causing any erosion or sedimentation. See Section D BMP Specification Details. The minimum design criterion for the drainage ditches should be at least the peak flow from the 2-year return period storm. In cases where flooding and the resulting damage could be severe, the capacity of the channel should be further increased.

The design of the channel should be such that the flow velocity expected from the selected design frequency storm shall not exceed the permissible velocity for the soil or types of grass used. Refer to Erosion Control Standard 10 Grassed Waterways, Table 3.

Open ditches have the advantages that they are usually less expensive than other types of drains, and inspection is easy. The disadvantage of open ditches is that the maintenance costs usually exceed the cost of other types of installations. Construction specifications require that:

i) All trees, brush, stumps, roots, obstructions and other unsuitable material shall be removed and properly disposed of.

ii) The final channel should have the proper grade and shape of the cross section in order to discharge the design flow.

iii) Where fill is used to construct the waterway, fills shall be compacted to prevent unequal settlement that could cause damage in the waterway.

iv) Stabilization, if required, shall be done as specified under vegetative practices. (Sodding is recommended.)
EROSION CONTROL STANDARD 12
CONSTRUCTION ROADS AND PARKING AREAS

Temporary stabilization of construction roads and parking areas with stone immediately after grading will reduce the amount of erosion and sedimentation.

Temporary roads should follow the contour of the natural terrain. Temporary parking during the construction activity should be located on flat areas where possible, and grades should be sufficient to provide drainage. Immediately after grading is completed, a 15 cm to 20 cm course of aggregate should be applied. Filter fabric may be used to provide additional stability. The temporary roads and parking areas may require periodic maintenance by providing gravel. Roadside ditches and adjacent cut or fill areas should be stabilized with temporary or permanent vegetation.
Erosion Control Standard 13
Dust Control

Soil erosion by wind can be a significant problem. Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage ways and into watercourses.

Dust can be controlled by:
- Clearing vegetation only from areas that will be worked right away.
- Vegetating or applying mulch to areas that won’t receive vehicle traffic.
- Constructing wind breaks or wind screens.
- Sprinkling the site with water until the surface is wet. Care should be taken that this does not lead to tracking of mud onto nearby streets.
- Spraying exposed soil areas with a dust palliative. Used oil is prohibited as a dust suppressant.
- Stopping work in serious adverse wind conditions.
- Using and maintaining internal haul roads.

To protect adjacent roads and property owners:
- Lower speed limits to decrease dust stirred up from unpaved roads and lots.
- Add surface gravel to reduce the source of dust emission. The amount of fine particles should be limited to 10 to 20%.
- Use geotextiles to increase the strength of new roads or roads undergoing reconstruction.
- Encourage use of alternate paved routes if possible.
- Encourage use of internal haul roads and maintain as required.
- Restrict use by tracked vehicles and heavy trucks to prevent damage to the road surface and base.
- Apply chemical dust suppressants.
- Pave unpaved permanent roads.
- Stop work in serious adverse wind conditions.
SECTION C

BMP STANDARDS AND SPECIFICATIONS FOR SEDIMENT CONTROL MEASURES
SEDIMENT CONTROL MEASURE 1  
VEGETATIVE BUFFER STRIP

INTRODUCTION
Vegetative buffer strip refers to a strip of dense vegetation that is used to prevent sedimentation or erosion by inter-position between disturbed and sensitive areas. Sediment, organic matter and other pollutants are removed from runoff by filtration and absorption. A strip of trees or shrubs can also serve as a windbreak to reduce wind erosion and soil desiccation.

APPLICATION
Vegetative buffer strips may be used to protect property boundaries, steep slopes, surface water features, and other areas sensitive to sediment accumulation (see Figure 4). Buffer strips may be planted or seeded. Where possible, vegetation that occurs naturally can be retained. Planted or seeded vegetation strips generally require a substantial time before becoming effective.

Figure 4: Vegetative Buffer Strip

TREED BUFFER STRIP IS TO BE AS WIDE AS IT IS HIGH. APPROXIMATELY 20 METRES.
DESCRIPTION

Buffer strips are generally densely vegetated, easily maintained bands of growing plants. They may consist of grasses, broad-leaved herbaceous plants (forbs), vines, shrubs and trees. Buffer strips are oriented perpendicular to the anticipated direction of sediment flow.

Trees and shrubs take longer to establish than grasses or forbs. However, once established, they require little maintenance and have deep and extensive root systems combined with a relatively high protective canopy.

Trees and tall shrubs are most effective for windbreaks. However for maximum slowing of surface runoff and collection of sediment, a complete mat of vegetation at ground level is important. This is best achieved by grasses, herbaceous legumes, vines and low shrubs which grow well in shady areas.

Grass or mixed grass/forb strips provide the thickest mat of vegetation at ground level. Such buffers do not need to take up as much space as strips containing trees and shrubs.

INSTALLATION

Existing narrow vegetative strips and fence lines, near streams and on top of slopes should be maintained. They may be widened by simply stopping cultivation and herbicide spraying of the areas. Natural regeneration will occur but there will be little control over species composition.

Artificial establishment of vegetation is needed in areas where the vegetation has been removed or where the existing buffer is not adequate. Eroded or steep slopes may be graded, carefully conserving the available topsoil.

Seeding a mixture of grasses and herbaceous legumes in unvegetated areas is an inexpensive method of stabilizing soil, particularly if the area is flat to moderately sloping. Sodding results in faster establishment of turf but is more expensive. Field sod, not certified as to composition, may be used where the degree of weed infestation will not be crucial. More information is provided in Erosion Control Standards 1 and 4 Seeding and Sodding.

When sodding, the strips of sod should be oriented at right angles to the slope (to the flow of water). Drain inlets should be completely surrounded (see Figure 5). Trees and shrubs can be established in conventional ways. Since it will take time for them to become effective, it may be necessary to provide a complete cover of mulch (such as wood chips) or temporary grass cover on slopes, until the woody plants become established and grow to a complete protective cover.
Where it is not practical to grade a very steep slope, terraces can be built, providing horizontal steps in which to plant vegetation. Alternatively, the slope can be broken up by the addition of “contour wattles”. These are bundles of live willow cuttings which are anchored with live willow stakes in trenches along the slope face. They act as a base vegetation growth and as a strap to slow surface runoff. The willow stakes and cuttings are capable of rotting if there is sufficient moisture.

On streambanks, fascine rolls (bundles of willow cuttings filled with coarse gravel and wired tightly) can be set against the bank so that the parts that are to take root touch the ground above water level and are able to get sufficient moisture. Covering with earth improves the contact with the ground and slows the loss of moisture from the wood. Various combinations of parked fascines and willow mattresses can be used for different streambank conditions. Woody plants can also be planted in the crevices of stone facing.

**MAINTENANCE**

Maintenance of vegetative buffer strips will vary with the intensity of usage as well as the intensity of the natural forces working on them. Steep slopes are always susceptible to erosion when parts of the vegetative cover fails. Restabilization, regrading and replanting may be necessary on occasions. Streambanks are always vulnerable to new damage and should be checked after high water events. Gaps in the plant cover shall be filled with new plants and protected if necessary. The perpetuation of a good mat of ground vegetation will be important.
Erosion and soil compaction are frequently caused by cattle grazing the vegetation in the strip. Buffer strips must be protected by fencing where required.

SPECIFICATIONS

1. Existing natural vegetation shall be retained whenever possible.

2. A mat of vegetation and/or litter shall cover the ground at all times.

3. The vegetative strip shall be located perpendicular to the flow of water (or wind) to be filtered.

4. The minimum width for grass (sod) filter shall be 1.5m.

5. A treed buffer strip should be at least as wide as it is tall, about 20 m for effective self-support and maintenance of filtering abilities.

6. The minimum width for a buffer strip shall increase with increasingly erodible and difficult conditions.

7. Further specifications will be found in Erosion Control Standards 1, 4 and 9 Seeding, Sodding, and Trees and Shrubs.
SEDIMENT CONTROL MEASURE 2
ROCK FILTERS AND BRUSH BARRIERS

INTRODUCTION
Filters remove sediment and reduce the velocity of flowing water. They can be constructed from any stabilized porous material such as crushed rock. There is no predetermined shape for filters. However, it is important that runoff flow through the filter rather than around it.

Brush barriers can also be used as temporary filters. They impede surface runoff and stop the movement of sediment. Brush barriers are constructed by piling brush, stone and root mates into a mounded row. During clearing operations, a mixture of tree limbs, small vegetation, roots and small amounts of soil and rock can be made into windrows along the toe of a slope.

APPLICATION
Filters are used around drain inlets, along the toes of slopes, on small slopes, on sediment basin dams, between water bodies and next to downhill adjacent properties. They are used below disturbed areas subject to erosion. They should not be constructed in live streams or in swales where there is the possibility of a washout. Thus, they require an existing drainage system and are for relatively small drainage areas only.

Brush barriers are often constructed at the perimeter of a disturbed slope area, parallel to the contours. They are also used in small channels to prevent gully erosion during the site construction period.

DESCRIPTION
Filters may take the form of small dams and barriers. They may be linear or they may completely surround the location being protected (i.e. drain inlets).

Filters using rock as a filtering medium have a long useful life. However, their construction and repair may not be as simple, considering that rocks will not have the same consistent shape and will not hold together as well.

There is no predetermined shape for filters. They may, for example, surround storm drain inlets. Water must be forced to go through the filter and should never flow around it.

Brush barriers can generally be constructed from clean organic material made available from site clearing operations that is usually discarded. The filtration ability of the barrier is enhanced if a filter fabric is anchored over it.
INSTALLATION

Rock or gravel filters can be constructed by placing concrete building blocks on the inside to keep stones from being washed away. Rock filters can also be constructed in a form similar to check dams (see Sediment Control Measure 3 Check Dams) for drainage areas up to 4 ha.

Brush Barrier

The size of a brush barrier will vary depending upon the amount of material available and the condition of the site. The barrier shall be constructed by piling brush, stone and root material into a mounded row on the contour. During clearing and grubbing operations, equipment can push or dump the mixture of limbs, small vegetation and root material, along with minor amounts of soil and rock, into windrows along the toe of a slope where erosion and runoff are expected. See Figure 6.

Figure 6: Brush Barrier

If a filter fabric is used, it is laid across the barrier with edges overlapping and secured by stakes in a trench immediately uphill from the barrier. The trench is then backfilled, and soil compacted over the filter fabric. The fabric is also anchored with twine to stakes on the downhill edge of the barrier.

MAINTENANCE

Filters shall be inspected after each rainfall. Close attention shall be paid to the prompt repair of damage, undercutting, end runs and erosion of the filter. Sediment deposits must be removed when the level of deposition reaches about one half the height of the filter, and preferably sooner.
Temporary filters shall be removed when they have served their purpose, but not before the areas up the slope have been cleaned up, and permanently stabilized. Any sediment deposits shall be graded, prepared and seeded.

**SPECIFICATIONS**

**Rock Filter**
1. Aggregate for rock filters shall be composed of clean, hard, durable mineral particles free from organic matter, clay balls, soft particles or other substances that would interfere with their free-draining properties. Not more than 15%, by weight, shall be flat, elongated particles. Aggregates may be accepted or rejected on past field performance. Smaller size gravel will need to be supported by concrete building blocks.

2. In channel flow applications, the center of the rock filter shall be about 15 cm lower than the outer edges.

**Brush Barrier**
1. The material in the brush barrier shall be piled as thickly as possible, with no large openings or sharp projections.

2. The height of a brush barrier shall be a minimum of 1 m. The width of a brush barrier shall be a minimum of 1.5 m at its base.

If filter fabric is used:

3. Filter fabric must have adequate strength for porosity and filtering capability. The pores should be relatively large to prevent excessive siltation and impoundment of large quantities of water.

4. The filter fabric shall be cut into lengths sufficient to lay across the barrier from its upslope base to just beyond its peak.

5. A trench shall be excavated 15cm wide and 10cm deep immediately uphill from the barrier and along its length.

6. The filter fabric shall be draped across the width of the barrier with the uphill edge placed in the trench, and the edges of adjacent places overlapping each other.

7. The filter fabric shall be secured in the trench with stakes set about 1m apart.

8. The trench shall be backfilled and soil compacted over the filter fabric.

9. Stakes shall be set into the ground along the downhill edge of the brush barrier,
and the fabric anchored by tying twine from the fabric to the stakes.

Note: Filter fabric is NOT recommended for brush barriers in channels.
SEDIMENT CONTROL MEASURE 3
CHECK DAMS

INTRODUCTION
Check dams are used to prevent channel erosion by reducing water velocities, lengthening detention times and increasing stream cross-sections. The structures can be made of straw, straw/silt fence, rock or rock gabions, wood or other durable materials, depending upon site conditions. Straw bale check dams can be susceptible to washouts and are not recommended where there is a potential for heavy channel flow.

Check dams are usually constructed across the channel, perpendicular to the contours. Poorly designed, installed or maintained check dams can create far more serious problems than those they were intended to prevent.

APPLICATION
Check dams are used where the capability of the earth or vegetative measures are exceeded in the safe handling of water at permissible velocities, where excessive slope conditions occur, or where water is to be lowered from one elevation to another.

DESCRIPTION
Log check dams can be economical in terms of material costs when logs are salvaged from clearing operations. However, log check dams require more time and labour to install. Stone for check dams must generally be purchased, but the cost is offset by the ease of installation.

INSTALLATION
Check Dam
The center of the check dam must be at least 15 cm lower than the outer edges. The maximum spacing between dams should be such that the toe of the upstream dam is at the same elevation as the top of the downstream dam. To avoid impounding large quantities of water, check-dams should be under 0.6 m in height. See Figure 7.

Stone/rock check-dams should be constructed of 5 to 8 cm stone. Complete coverage of the ditch or swale is necessary and can be achieved with hand or mechanical placement. To reduce destruction of the downstream side, the slope should be 1V:4H (Figure 7). See Section D BMP Specification Details.
Log check-dams can be constructed from 10 to 15 cm logs. The 15 cm lower height required at the center can be achieved either by careful placement of the logs or by cutting the logs after they are in place (see Figure 8).

**Strawbale Check Dam**

1. Straw bale check dams should be constructed so the top of the downstream bale is approximately level with the lowest ground elevation of the upstream bale.

2. The straw bales should be oriented perpendicular to the contours.

3. The straw bales shall be extended to such a length that the bottoms of the end bales are higher in elevation than the top of the lowest middle bale to ensure that
sediment-laden runoff will not flow around the filter.

4. Sediment removal should take place when the level reaches about one half the height of the lowest (or flow line bales) and preferably sooner.

5. If channel side slopes are flatter than 7H:1V, consider alternative methods for stabilizing the channel.

NOTE: In certain circumstances an apron or splash pad may be needed downstream of the check dams in highly erodible soil.

MAINTENANCE

Check dams should be checked after each significant rainfall. Necessary repairs should be made promptly, and sediment must be removed when it reaches one half of the original height or sooner.

The center of check-dams must remain lower than the edges. Erosion caused by high flows around the edges of the dam should be corrected immediately.

Figure 8: Log Check Dam
SPECIFICATIONS

Stone/Rock Check Dams
1. Aggregate for stone checkdams shall be composed of clean, hard, durable mineral particles of 5 to 8 cm size, free from organic matter, clay balls, soft particles or other substances. Not more than 15 per cent by weight, shall be flat, elongated particles. Aggregates may be accepted or rejected based on field performance.

2. The side slopes of stone/rock check dams shall have a vertical to horizontal ratio of 1V:1.5H on the upstream side and 1V:4H on the downstream side.

Log Check Dam
1. Logs for log check dams shall be composed of sound wood throughout and be 10 to 15 cm in diameter.

2. The logs for log check dams shall be imbedded into the soil at least 0.5

3. Log check dams must be designed to avoid undermining and outflanking around the end.

Strawbale Check Dam
1. Straw (or hay) bales shall be of one size, with straight sides and square corners, tightly packed and bound with at least two loops of wire or twine. Each bale should weigh at least 12 kg and preferably more.

2. Straw bales shall be placed in a single row, lengthwise, with ends tightly abutting adjacent bales. The wire or string bindings should be oriented around the sides rather than along the tops and bottoms of the bales in order to prevent early deterioration of the bindings.

3. The bales shall be embedded or trenched into the soil to a minimum depth of 10 cm. After the bales are staked and chinked, the excavated soil shall be backfilled and compacted against the filter.

4. Each bale shall be securely anchored by at least two stakes or re-bars driven through the bale. The first stake in each bale shall be driven toward the previously laid bale to force the bales together.

See Section D BMP Specification Details for more information.
SEDIMENT CONTROL MEASURE 4
SILT FENCES

INTRODUCTION
A silt fence is a sediment barrier that utilizes a standard strength or extra-strength filter fabric attached to a wire support fence. Silt fences slow the flow rate of runoff substantially and act as a filter to remove suspended sediment.

APPLICATION
Silt fences can be used to control sediment below disturbed areas where erosion would likely occur as sheet or rill erosion. They can also be used in areas where the size of the drainage area is not more than 0.1 ha/30 m of silt fence length, the maximum slope length behind the barrier is 30 m, the maximum gradient is 2H:1V, and in small swales and along ditches where 1 ha is the maximum contributing drainage area. Silt fences are not to be constructed in areas where flows are expected to exceed 0.03 m³/s. As a result, silt fences constructed through V ditches are not generally recommended.

DESCRIPTION
Silt fence fabric may be composed of natural or synthetic material. Woven and non-woven fabrics are commercially available with the woven fabrics generally having higher strength. Permeability rates vary and there is considerable variation when filtering the finer silt and clay particles. See Figure 9 and Specifications for Silt Fences.
Silt fences with low permeability have a high filtering capacity. However, such fabrics may not have sufficient structural strength to support the weight of water ponded behind the fence line.

Posts of either wood or steel may be used to support the fence. Wire fencing may be used to help support the fabric, depending upon the fabric’s strength. Standard wire and wood slat snow fencing is generally recommended.

The height of a silt fence should not exceed 1 m so as not to impound dangerously large quantities of water. A silt fence is a temporary barrier with a usable life of about six months.

**INSTALLATION**

Proper silt fence installation is critical to effectively control erosion and sediment control. If correctly installed, silt fences help prevent topsoil from migrating off construction sites and protect adjacent property for the effects of siltation.

Silt fences that are intended to intercept overland flows should be surveyed to ensure they are constructed parallel to slope contours. An anchor trench is first excavated along the contour on the upslope side of the barrier. The posts are then set firmly into the ground.

The wire mesh or standard snow fencing support fence (if used) is then fastened securely to the upslope sides of the posts, extending into the trench and not exceeding 1 m above the ground surface.

The fabric is then extended into the trench and stapled or wired to the fence. The reinforced fence may be eliminated if an extra strength filter fabric and a closer post spacing pattern is used. The filter shall then be stapled or wired directly to the support posts.

The trench is then backfilled and the soil is compacted over the filter fabric to ensure that no gaps between ground and fabric exist. **It should also be noted that silt fences do not work without proper trenching and compacted backfill.** See Section D BMP Specification Details also.

**MAINTENANCE**

Inspection of the silt fence must be conducted immediately after heavy rainfall and daily during prolonged rainfall. Repairs to the fence must be completed immediately, and any section of the fence which decomposes before the end of its expected use shall also be replaced immediately. The biggest mistake made with silt fence is to install it and forget about it. Regular inspection and maintenance is key to silt fence effectiveness.

Sediment trapped in the filter should be inspected and removed as required. **When**
these deposits reach one-half the height of the barrier, they must be removed. Once their useful purpose has been fulfilled, silt fences should be removed. However, this shall not occur until after the upslope area has been permanently stabilized. After removal of the silt fence, the sediment which remains in place must be graded, prepared and seeded.

SPECIFICATIONS

1. The post used for supporting a silt fence shall be either 10 cm diameter wood or 2 kg per linear meter steel, with a minimum length of 1.5 m. The steel posts must also have projections to enable the fastening of wire to them.

2. The posts shall be set at a maximum spacing of 3 m and driven at least 35 cm into the ground. When a wire support fence is not used, posts shall not be spaced more than 2 m apart.

3. The anchor trench shall be a minimum 20 cm deep x 10 cm wide and shall be excavated along the post line on the upslope side of the barrier.

4. For silt fences using a standard strength filter cloth, the reinforcement fence, if used, shall be a minimum of 1.1 m in height, have a maximum mesh spacing of 15 cm, and have a minimum wire diameter of 2 mm. It shall be fastened securely to the upslope sides of the posts with heavy duty staples of a minimum of 25 cm in length, or with tie wires or hog rings, providing standard strength fabric is used. The fence shall extend a minimum of 5 cm into the trench and shall not exceed 1 m above the ground surface.

5. A pervious synthetic filter fabric, such as propylene, nylon, polyester or ethylene yarn may be used. The fabric, in order to provide a minimum construction life of six months, at a temperature range of -18°C to 50°C, shall contain ultraviolet ray inhibitors and stabilizers. Pervious and closely woven natural fiber fabric may also be used in place of synthetic fabric. However, porosity and filtering capability must be comparable to synthetic material. In order to avoid the use of joints, the fabric shall be from a continuous roll, cut to the length of the barrier.

6. 20 cm of the fabric, standard strength, shall be extended into the trench and shall be stapled or wired to the fence (or directly to the posts if a fence is not used). However, the fabric shall not extend more than 1 m above the ground surface and it shall not be stapled to existing trees.

7. The trench shall be backfilled and the soil compacted over the filter fabric.

Silt fence effectiveness can be limited by several conditions (see Figure 10). Care should be taken to limit these conditions or situations.
**Figure 10: Conditions that Limit Silt Fence Effectiveness**

<table>
<thead>
<tr>
<th></th>
<th>Illustration</th>
<th>Condition Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td><img src="image1.png" alt="Image" /></td>
<td><strong>Slope and/or Length of Slope</strong>&lt;br&gt;5% to 10%: no more than 50 feet&lt;br&gt;10% to 20%: no more than 25 feet&lt;br&gt;more than 20%: no more than 15 feet</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td><img src="image2.png" alt="Image" /></td>
<td>Silt fence is not aligned parallel to slope contours</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td><img src="image3.png" alt="Image" /></td>
<td>Edges of the silt fence are not curved uphill, allowing flow to bypass the fence</td>
</tr>
<tr>
<td><strong>4</strong></td>
<td><img src="image4.png" alt="Image" /></td>
<td>Contributing length to fence is greater than 100 feet</td>
</tr>
<tr>
<td><strong>5</strong></td>
<td><img src="image5.png" alt="Image" /></td>
<td>Fabric is not entrenched deeply enough to prevent undercutting</td>
</tr>
<tr>
<td><strong>6</strong></td>
<td><img src="image6.png" alt="Image" /></td>
<td>Spacing between posts is greater than eight feet</td>
</tr>
<tr>
<td><strong>7</strong></td>
<td><img src="image7.png" alt="Image" /></td>
<td>Fence receives concentrated flow without reinforcement</td>
</tr>
<tr>
<td><strong>8</strong></td>
<td><img src="image8.png" alt="Image" /></td>
<td>Installed below an outlet pipe or weir</td>
</tr>
<tr>
<td><strong>9</strong></td>
<td><img src="image9.png" alt="Image" /></td>
<td>Silt fence is <em>upslope</em> of the exposed area</td>
</tr>
<tr>
<td><strong>10</strong></td>
<td><img src="image10.png" alt="Image" /></td>
<td>Silt fence alignment does not consider construction traffic</td>
</tr>
<tr>
<td><strong>11</strong></td>
<td><img src="image11.png" alt="Image" /></td>
<td>Sediment deposits behind silt fence reduce capacity and increase breach potential</td>
</tr>
<tr>
<td><strong>12</strong></td>
<td><img src="image12.png" alt="Image" /></td>
<td>Alignment of silt fence <em>mirrors the property line</em> or limits of disturbance, but does not reflect ESC needs</td>
</tr>
</tbody>
</table>

SEDIMENT CONTROL MEASURE 5
GEOSYNTHETIC PERMEABLE BERMS

INTRODUCTION
Low profile, uni-body permeable berms are used to reduce water (or wind) velocity over soil, with the intent of reducing or preventing transport of fine soil particles. They provide portable drainage control for construction sites, channels, roads and slopes. Porous berms allow a smoother and less damaging release of water through the berms as opposed to allowing water to cascade over a solid berm, such as strawbales. By controlling the velocity of the water, the migration of sediment is controlled.

APPLICATION
Geosynthetic, uni-body permeable berms should be constructed at the perimeter of disturbed slopes areas, parallel to the slope contours. They can also be used in small channels to prevent gully erosion during site construction. The system is comprised of a series of synthetic, porous berms installed perpendicular to the direction of flow. While each individual berm captures sediment, the series of berms functions as a large sediment filter which gradually improves water quality as the sediment load is removed from the runoff.

DESCRIPTION
Geosynthetic, uni-body berms provide effective barriers, which are designed for repeated use. Typically, these permeable berms are designed to compliment the performance of erosion control blankets in channel and slope applications. The composite sediment/erosion control system can also be used as an alternate to hard armor in high flow applications. The permeable berms can also be left in place for final channel stabilization since there is no degradation.

INSTALLATION
It is recommended that an erosion control blanket be used in conjunction with the geosynthetic, uni-body permeable berm. All installations should be as per the manufacturer’s recommendations.

The recommended spacing is directly related to the channel grade. As channel grade increases, check spacing decreases. In general, the recommended spacing is:

\[
\text{Maximum berm spacing (m) = Height of Permeable Berm (m)} / \text{Channel Slope (m/m)}
\]

1. Prepare channel by forming the shape and grade of the channel and compacting the subgrade.
2. Survey locations of ditch checks along the length of the channel (according to the spacing equation).
3. Place geosynthetic permeable berms perpendicular to the direction of flow. Panels should be overlapped by a minimum of 50 mm. Cut a slot in the crest of the overlapping berm to allow contact between the foot of the berm and the soil.

4. Install a 2m wide erosion control blanket perpendicular to the direction of flow, centered under the permeable berm. Allow 100 mm of slack across the blanket width for folding over the upstream foot of the permeable berm. Provide a 15 cm x 15 cm trench at the upstream edge of the blanket. Staple blanket to the bottom of the trench with minimum 15 cm long staples spaced at 50 cm centers. Re-compact soil in trench.

5. Secure berms with 25 cm long galvanized spikes with washers through the foot of the unit. Spike spacing across the width of the panel should be 25 cm on the upstream leg and 50 cm on the downstream leg.

MAINTENANCE

Silt deposited behind the permeable berms must be removed periodically to maintain permeability and performance of the berms. Allowing excessive sediment to build up behind the berm will create a non-porous check structure. As water flows over the plugged berm, the impact of the runoff on the downstream side will promote the dislodgment and transportation of sediment, leading to failure of the system.
SEDIMENT CONTROL MEASURE 6
DRAIN INLET PROTECTION

INTRODUCTION
Drain inlet protection prevents course sediment from entering the underground storm pipe system prior to permanent stabilization of the disturbed areas. This is generally accomplished by using a small sediment trap around the storm drain, primarily in trap low locations. The trap slows the runoff velocity and aids in sedimentation prior to the runoff entering the drain inlet.

APPLICATION
Inlet protection should be used where storm drain inlets are operational prior to permanent stabilization of the disturbed drainage area. Inlet protection can be effective where drainage enters the municipal sewer system or a watercourse.

DESCRIPTION
Drain inlet protection can be formed using sod, straw bales, rock or man made fiber filters which trap the sediment before it enters the system. See Figure 11.

![Figure 11: Types of Drain Inlet Protection](image)

INSTALLATION
Gravel Filters Inlet Drain
Placement of gravel filters around inlet drains must be completed in a manner that will not cause local flooding.

Gravel filters can be used if the immediate and adjacent area to the inlet drain consists of soil or pavement. **Only gravel filters shall be installed on top of the pavement.**

1. Place concrete blocks around the grate. The blocks can be stacked one or two high and should be supported by a 5 cm x 10 cm board.

2. Wrap 13 mm (½ in) mesh wire screen around the concrete blocks.
3. Place 25 mm to 38 mm diameter rock around the blocks and wire screen. Be sure the rock extends down from the top of the concrete block.

4. To prevent damage to vehicles, signs warning drivers about the structures may be necessary.

An alternative method is to use gravel bags to prevent collapsing. Use of rock having diameters smaller than 25 mm (1 inch) may result in clogging of pores and reduce the amount of water flowing into an inlet.

**Gravel Filter Curb Inlet**

A gravel filter shall be installed only when a curb inlet is in a sump location. Otherwise, the possibility exists that runoff waters will be diverted from the inlet and cause downstream flooding. See Section D BMP Specification Details for more information.

1. Place concrete blocks around the inlet so a “U” shape is formed. The blocks must be supported by a 5 cm x 10 cm (2 in x 4 in) board placed along the curb.

2. Wrap 13 mm (½ in) mesh wire screen around the concrete blocks.

3. Place 25 mm to 38 mm diameter rock around the blocks and wire screen. Be sure the rock extends down from the top of the concrete block.

4. To prevent damage to vehicles, signs warning drivers about the structures may be necessary.

An alternative installation is to use gravel bags supported by a 5 cm x 10 cm board to prevent collapsing. Use of rock smaller than 25 mm (1 inch) in the bag may result in clogging of pores and reduce the amount of water flowing into an inlet.

**MAINTENANCE**

**Gravel Filter Inlet Drain**

All gravel filters installed around inlet drains should be inspected and repaired after each runoff event. Sediment should be removed when material is within 8 cm (3 inches) of the top of any block. Periodically, the gravel should be raked to increase infiltration and filtering of runoff waters. Accumulated sediment is to be removed immediately from roads and streets.

**Gravel Filter Curb Inlet**

All gravel filter curb inlets shall be inspected and repaired after each runoff event. Sediment deposits are to be removed once material is within 8 cm (3 inches) of the top of any block. Periodically, the gravel shall be raked to increase infiltration and filtering of runoff waters. Accumulated sediment is to be removed immediately from roads and streets.
SPECIFICATIONS

Inlet Filters should be installed as per manufacturer’s recommendations. Other products may be available. Contact Wastewater & Drainage and/or Urban Development for approval.
SEDIMENT CONTROL MEASURE 7
SEDIMENT TRAPS

INTRODUCTION
A sediment trap is a small temporary ponding area that is used to collect and store sediment-laden runoff. Typically, there is a gravel outlet. Sediment traps are used to slow runoff flow velocity, prior to entering a drainage inlet, in order to settle out some sediment. Sediment traps are generally simple and inexpensive to install.

APPLICATION
Sediment traps are temporary structures designed to remove soil particles suspended in runoff waters from 2 ha (5.0 acres) or less of disturbed lands. If contributory lands exceed 2 ha, installation of a properly designed sediment basin/pond is recommended.

As with sediment basins, traps are not capable of removing 100% of the soil particles suspended in runoff waters. However, when properly installed, they may remove up to 75% of sediment in runoff waters depending upon the upstream soil types and design precipitation event.

The use of check-dams is also a form of sediment trap. When flow velocity is reduced, the heavier sediment particles settle out. The use of sand bags in natural waterways on a site to create small dams will cause the water to drop part of its sediment load. Similarly, the placement of large rocks in front of sewer inlets will detain and pond stormwater. This will cause sedimentation, as well as a reduction of soil erosion at the sewer inlet. Refer to Sediment Control Measure 6 Drain Inlet Protection for further information.

DESCRIPTION
The underlying feature of a sediment trap is the formation of a pond to slow the rate of flow, cause sediment to settle out, and allow storage of sediment. Sediment traps are only effective in removing sediment down to the medium silt size fraction. Finer fractions (fine silt and clay) will pass through untreated. Therefore, erosion control is still needed. See Figure 12. For more detailed information, refer to Specifications for Single and Double Sediment Traps.

If soils are predominantly clay, the effectiveness may be less than 75%. Understanding upstream soil conditions is important when installing sediment traps.
Figure 12: Typical Sediment Trap

INSTALLATION
Identify upstream soils that may flow into the trap.

Decide whether a single or double chamber trap can be installed on the land available. The total width of each type of trap shall be nearly the same. Only the length will be different. Refer to Section D BMP Specification Details.

Install an outlet filter using a mixture of 8 cm to 15 cm (3 in to 6 in) diameter rock. It is important that a minimum 25 cm (10 in) depression exist in the rocks to accommodate overflow conditions.

Develop the containment berm by excavating bottom material necessary to create an average pond depth of at least 75 cm (30 in). Additional material may need to be imported. If desired, the containment berm may be constructed out of riprap having a mixture of 8 cm to 20 cm (3 in to 8 in) diameter rock.

MAINTENANCE
As runoff waters enter the sediment trap, sedimentation will occur and eventually fill the pond. Accumulated material is to be removed once sediment accumulates within 38 cm (15 in) of the overflow depression. Therefore, sediment removal would typically occur when the design storage level is 1/3 to ½ full.

When significant runoff flows enter the trap and destroy an embankment or rock filter, repairs are to be completed immediately. The rock berm used to create a double chamber must be maintained at all times to ensure that a proper flow path length exists. If necessary, additional riprap may be installed at locations where possible embankment erosion can occur.
SPECIFICATIONS

In general, sediment traps should be sized for a minimum storage volume of 150 m³/ha over the contributing drainage area. Storage volumes of 250 m³/ha are recommended where site conditions and construction practices warrant higher sediment trapping.
SEDIMENT CONTROL MEASURE 8
SEDIMENT PONDS

INTRODUCTION
Sediment ponds or basins are temporary ponding areas that are used to collect and store sediment-laden runoff. They function similar to sediment traps in that runoff velocity is slowed to promote sedimentation. Where a sediment pond differs is with respect to the contributing drainage area it services.

APPLICATION
Sediment ponds are temporary structures designed to remove soil particles suspended in runoff waters from disturbed lands exceeding 2 ha (5.0 acres) in size.

Sediment basins are not capable of removing 100% of the soil particles suspended in runoff waters. However, when properly installed, they may remove up to 75% of sediment in runoff waters depending upon the upstream soil types and design precipitation event.

DESCRIPTION
The underlying feature of a sediment pond is the formation of a pond to slow the rate of flow, cause sediment to settle out, and allow storage of sediment. However, due to their size, sediment ponds should be installed only on sites where failure of the structure would not result in loss of life, damage to homes or buildings, or interruption of use or service of public roads or utilities. Also, sediment ponds can be attractive to children and therefore be dangerous.

INSTALLATION
Identify the contributing drainage area and the type of upstream soils that may flow into the sediment pond.

Develop the containment berm by excavating bottom material necessary to create an average pond depth of 1 m. A maximum depth of 1.5 m should not be exceeded.

An emergency spillway composed of riprap must be included as part of the design. As well, an outlet riser pipe, or approved equivalent must be incorporated in the pond design.

MAINTENANCE
As runoff waters enter the sediment pond, sedimentation will occur and eventually fill the pond. **Accumulated material is to be removed once sediment reaches 30 cm (12") in depth.**

When significant runoff flows enter the pond and destroy an embankments or slopes, repairs are to be completed immediately. Riprap can be used to protect areas in the
pond subject to increased erosion potential.

SPECIFICATIONS

7. In general, sediment ponds or basins should be sized for a minimum storage volume of 250 m³/ha over the contributing drainage area, where possible. This corresponds to the minimum water quality control volume required for permanent facilities. All sediment pond designs must be carried out by qualified engineering design consultants.

8. Length to Width ratio should be between 3:1 and 6:1.

9. The maximum pond depth should not exceed 1.5 m.

10. The sediment pond bottom should be flat. Interior facing side slopes should not exceed 3H:1V maximum, providing safety is not a concern. Otherwise, milder side slopes (i.e. 5H:1V) should be used. Fencing is an option if safety is a great concern.
SECTION D

BMP SPECIFICATION DETAILS
RIP RAP SPEC.
N.T.S.

AT THE 1880 x 1260mm CULVERT, SPECIFY 200-300mm RIP RAP IN A 5m RADIUS SEMI-CIRCLE FROM THE EDGE OF INVERT OF THE CULVERT. TAPER UP ALONG THE SIDES TO THE SPRINGLINE AT BOTH THE UPPER AND LOWER END.
BACKFILL AND COMPACT DIRT IN THE 15cm x 15cm. (6in. x 6in.) TRENCH AFTER INSERTING STAPLES THROUGH THE MATERIAL

INSERT STAPLES THROUGH THE BLANKET IN A 15cm x 15cm. (6in. x 6in.) TRENCH WITH EACH PATTERN OF 3 STAPLES BEING ABOUT 50cm. (20in.) APART

AS AN ALTERNATIVE TO TRENCHING WHEN TOP OF SLOPE IS RELATIVELY FLAT, EXTEND MATERIAL ABOUT 100cm. (40in.) ON TOP OF THE GROUND AND RANDOMLY INSERT STAPLES THROUGH THE MATERIAL ABOUT 50cm. (20in.) APART.

STAPLES MUST BE INSERTED THROUGH OVERLAP MATERIAL

MAXIMUM SPACING OF STAPLES

BLANKET MATERIAL MUST OVERLAP AT LEAST 15cm. (6in.) AND STAPLES INSERTED THROUGH BOTH FABRICS AT A SPACING OF ABOUT 100cm. (40in.) APART

BLANKET MATERIAL MUST OVERLAP AT LEAST 15cm. (6in.) AND STAPLES INSERTED THROUGH BOTH FABRICS AT A SPACING OF ABOUT 50cm. (20in.) APART

AT THE END OF SLOPE, SECURE BLANKET MATERIAL BY INSERTING STAPLES ABOUT 50cm. (20in.) APART THROUGH THE FABRIC

HILLSIDE BLANKET INSTALLATION
BALES MUST BE TIGHTLY ABUTTING WITH NO GAPS

10cm (4in.) MINIMUM TRENCH FOR BALES

2.5cm x 5.0cm (1in. x 2in.) WOOD STAKE

WEDGE LOOSE STRAW BETWEEN BALES

TWINE/WIRE

1. EXCAVATE THE TRENCH

2. PLACE AND STAKE STRAW BALES

BACKFILL MATERIAL

FLOW

3. BACKFILL AND COMPACT EXCAVATED SOIL

STAKED AND ENTRENCHED 23kg. (50lb.) STRAW BALE

2.5cm x 5.0cm (1" x 2") WOOD STAKE

OVERFLOW

WHERE OVERFLOWS OCCUR, INSTALL AND Staple A GEOSYNTHETIC BLANKET FOR ADDITIONAL PROTECTION

SEDIMENT LADEN RUNOFF WATERS

BACKFILL TO PREVENT PIPING

15cm. (MIN.)
(6in.)

10cm (MIN.)
(4in.)

CROSS SECTION OF A PROPERLY INSTALLED STRAW BALE

INSTALLATION OF STRAW BALES
STRAW BALE CHANNELS & FILTER

END POINTS 'A' MUST BE HIGHER THAN FLOW LINE 'B'

WIDE CHANNELS

NARROW CHANNELS

WOOD STAKE OR RE-BAR

FLOW DIRECTION

SEDIMENT DEPOSITION

COMPACT SUBGRADE

BACKFILL SOIL

STRAW BALE FILTER
END POINTS 'A' MUST BE HIGHER THAN FLOW LINE POINT 'B'

OVERLAP SIDE BALES ON FLOW LINE BALE(S) TO PREVENT GAPS

ONE OR MORE BALES IN CHANNEL BED TIGHTLY ABUTTING EACH OTHER

BALES MUST BE TIGHTLY ABUTTING WITH NO GAPS

ALTERNATIVE LOCATION OF FLOW LINE BALE(S)

PLACE DOWNSTREAM BALES SUCH THAT POINT 'B' IS APPROXIMATELY LEVEL WITH THE LOWEST GROUND ELEVATION OF THE UPSTREAM BALE

WIDE CHANNELS

NARROW CHANNELS

<table>
<thead>
<tr>
<th>VALUE OF Z</th>
<th>MIN # OF BALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 or &lt;</td>
<td>1&quot;</td>
</tr>
<tr>
<td>1.0-3.5</td>
<td>2&quot;</td>
</tr>
<tr>
<td>3.5-5.0</td>
<td>3&quot;</td>
</tr>
<tr>
<td>5.0-7.0</td>
<td>4&quot;</td>
</tr>
<tr>
<td>&gt; 7.0</td>
<td>NOT RECOMMENDED</td>
</tr>
</tbody>
</table>

**ASSUMES DEPTH OF WATER ABOVE POINT 'B' WILL NOT EXCEED 15cm (6in.)**

THE CITY OF CALGARY
DEPARTMENT OF ENVIRONMENTAL SERVICES

INVESTIGATING AREA: [Diagram and text]

STRAW BALE DROP STRUCTURES FOR DRAINAGE CHANNELS
ROCK CHECK DAM
N.T.S.

AT THE 600mm CULVERTS, THE INLET IS TO BE PROTECTED WITH A ROCK FILTER CHECK DAM.

25-75mm CRUSHED CLEAR ROCK

FLOW DIRECTION

4:1

1.5:1 (MAX) .06m (MAX)

AT F.A.C. THE ROCK CHECK DAMS SHOULD BE REMOVED AND THE AREA SODDED.
LARGE ROCK CHECK DAM

N.T.S.

SILT FENCE
INSTALL AS PER
CITY SPECS.

ORIGINAL
GROUND

10m

1.0m

1.2m

0.4m

SECTION A - A

100-200mm
ROUND ROCK

3:1

2.0m±

25-75mm
CRUSHED
CLEAR ROCK

1.5:1

0.75m±
### Recommended Rock Size & Flow Depths

<table>
<thead>
<tr>
<th>D-58 of Rock (mm)</th>
<th>Downstream Flowline of Slope of Structure (mm)</th>
<th>Maximum Water Depth over Rock (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.35 0.30 0.25 0.20 0.15 0.10</td>
<td>15 18 20 25 33 48</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>30 36 41 50 66 100</td>
</tr>
</tbody>
</table>

**RECOMMENDED ROCK SIZE & FLOW DEPTHS**

- **75mm (3in.) Min. Course Rock**
- **0.35 M/M or Flatter Flow Line Slope**
- **Flow**
- **Rock set in 10cm. (4in.) Minimum Trench**
- **60cm. (2 ft.) Maximum**
- **Minimum Depth of Course Rock placed in Channel**
- **Flow line is 15cm. (0.5ft.)**
- **End Points 'A' must be higher than flow line point 'B'**
- **15cm. to 45cm. (0.5ft. to 1.5ft.) Difference**

**SIDE VIEW**

**FRONT VIEW**

**Flow**

**Place downstream structure such that point 'B' is approximately level with the lowest ground elevation of the upstream structure**
SILT FENCE
N.T.S.

FENCE POST

WIRE FENCING OR EQUIV.

FABRIC FILTER

STAPLES

COMPACTED BACKFILL

FLOW DIRECTION

20cm DEEP x 10cm WIDE TRENCH

2:1 MAX. GRADIENT
SILT FENCE BARRIERS

SILT FENCE (ALSO KNOWN AS FILTER FENCES) BARRIERS FUNCTION SIMILAR TO STRAW BALES. THEY CAN MINIMIZE SEDIMENT ENTERING STREAMS AND OTHER WATER BODIES AS WELL AS PROTECT ADJACENT PROPERTIES.

WHEN USED TO CONTROL SEDIMENT FROM STEEP SLOPES, SILT FENCES SHOULD BE PLACED AWAY FROM THE TOE OF SLOPE FOR INCREASED HOLDING CAPACITY.

INSTRUCTIONS FOR INSTALLING

STEP 1: DIG A 10 to 15cm WIDE x 20cm DEEP TRENCH

STEP 2: ROLL OUT FABRIC MATERIAL ALONG THE FRONT OF THE TRENCH SO THE STAKES SHALL BE ON THE DOWNSTREAM SIDE WITH THE BOTTOM FLAP LAYING IN THE TRENCH.

STEP 3: STARTING AT ONE END, DRIVE THE FIRST STAKE FAR ENOUGH INTO THE GROUND SO THAT ABOUT 20cm OF FLAP MATERIAL LIES IN THE TRENCH.

STEP 4: AT THE NEXT STAKE, PULL THE MATERIAL TAUNT BEFORE DRIVING IT INTO THE GROUND.

STEP 5: REPEAT STEP 4 UNTIL THE SILT FENCE IS INSTALLED.

STEP 6: WHEN ATTACHING TWO FENCES, USE THE ROTATION METHOD ILLUSTRATED IN THE DRAWING.

STEP 7: BACKFILL THE TRENCH AND COMPACT THE SOIL.

ADDITIONAL FABRIC MATERIAL STABILITY CAN BE REALIZED BY ATTACHING AN ANCHOR AS ILLUSTRATED IN THE DRAWING.
MAINTENANCE

THE FABRIC IS TO BE INSPECTED AND REPAIRS COMPLETED AFTER EVERY STORM EVENT. SEDIMENT DEPOSITS SHALL BE REMOVED ONCE COLLECTED MATERIAL REACHES A DEPTH OF ONE-HALF THE FENCE HEIGHT.

SPACING OF POST TO BE 2-3 METRES (6-10 FT.) APART

FILTER FABRIC MATERIAL

60cm (2 FT.)

FOR ADDITIONAL STRUCTURAL STRENGTH, FABRIC MATERIAL CAN BE ATTACHED TO A 15cm. (6 in.) MESH WIRE SCREEN WHICH HAS BEEN FASTENED TO THE POSTS.

TO REDUCE THE POTENTIAL OF BLOWOUTS, ANCHORS CAN BE ATTACHED TO THE FABRIC MATERIAL BEFORE BACKFILLING THE TRENCH.

FILTER FABRIC MATERIAL SECURELY FASTENED TO THE POSTS OR (IF USED) THE WIRE MESH

WOOD OR STEEL POST

IF NOT ANCHORED, CREATE AN 'L' SHAPE WITH FABRIC MATERIAL IN A 10cm. x 10cm. (4in. x 4in.) TRENCH BEFORE BACKFILLING

IF ANCHORED, INSERT ABOUT 20cm OF FABRIC MATERIAL IN 20cm DEEP TRENCH BEFORE BACKFILLING.

ATTACHING TWO SILT FENCES

PLACE THE END POST OF THE SECOND FENCE INSIDE THE END POST OF THE FIRST FENCE

ROTATE BOTH POSTS AT LEAST 100 DEGREES IN A CLOCKWISE DIRECTION TO CREATE A TIGHT SEAL WITH THE FABRIC MATERIAL

DIRECTION OF RUNOFF WATERS

DRIVE BOTH POSTS ABOUT 25cm. (10in.) INTO THE GROUND AND BURY FLAP
PLACE TWO OR MORE SETS OF BAGS IN A MANNER THAT RESULTS IN MAXIMUM SUPPORT. THE FLOW LINE BAG MUST BE LOWER THAN THE TOP OF CURB.

NOTE: BAGS MUST BE PARTIALLY (ABOUT 2/3) FULL.
WATER STORAGE

TOP HELD IN PLACE BY HOG RINGS OR SEWN

APPROX. 30cm. (12in.)

DISCHARGE

TOP VIEW

GEOSYNTHETIC FABRIC MATERIAL WRAPPED AROUND SAND AND/OR ROCK

2.5-4.0cm. (1.0-1.5in.) DIAMETER ROCK FILTER SECTION
SAND FILLER SECTION
ONE OR MORE DISCHARGE PIPES

SAND FILLER SECTION

5cm. (2in.) DIAMETER DISCHARGE PIPE
SAND OR ROCK FILLER MATERIAL

WATER STORAGE

FRONT VIEW

SIDE VIEW

TOP HELD IN PLACE BY HOG RINGS OR SEWN

20-40cm. (8-16in.)

MINIMUM

SLITS CUT INTO ROCK FILTER SECTION FOR PASSAGE OF WATER

GEOSYNTHETIC FABRIC MATERIAL WRAPPED AROUND SAND AND/OR ROCK

BACK VIEW

NOTE: A MINIMUM 1.0 METER (3.0 FT.) WIDE ROCK FILTER SECTION MUST BE LOCATED AT A LOW POINT TO WHICH WATER WILL FLOW TOWARD.
CONTAINMENT BERM CONSTRUCTED FROM BOTTOM MATERIAL EXCAVATED TO CREATE AN AVERAGE POND DEPTH OF AT LEAST 75cm. (30in.) WHEN MEASURED FROM THE RIPRAP DEPRESSION LOW POINT. ALTERNATIVE MATERIAL CAN CONSIST OF RIPRAP HAVING A MIXTURE OF 8cm. TO 20cm. (3in. to 8in.) DIAMETER ROCK.

SEDIMENT LADEN RUNOFF WATER

MIXTURE OF 8cm. TO 15cm. (3in. TO 6in.) MEAN DIAMETER RIPRAP FILTER MATERIAL

OVERFLOW AND FILTERED WATER

PLAN VIEW

MINIMUM FREEBOARD OF 25cm. (10in.)

MINIMUM 25cm. (10in.) DEPRESSION

100cm. (40in.)

MIXTURE OF 8cm TO 15cm (3in. TO 6in.) MEAN DIAMETER RIPRAP FILTER MATERIAL

OUTLET VIEW
Containment berm constructed from bottom material excavated to create an average pond depth of at least 75cm (30in.) when measured from the riprap depression low point. Alternative material can consist of riprap having a mixture of 8cm to 20cm (3in. to 8in.) diameter rock.

Overflow and filtered water

Mixture of 8cm to 15cm (3in. to 6in.) mean diameter riprap filter material

Sediment laden runoff water

Plan View

Minimum freeboard of 25cm (10in.)

Minimum 25cm (10in.) depression

Outlet View

Mixture of 8cm to 15cm (3in. to 6in.) mean diameter riprap filter material

300cm (120in.)

100cm (40in.)

W

W

W

L

W

MINIMUM 25cm (10in.) DEPRESSION

MIXTURE OF 8cm TO 15cm.
(3in. TO 6in.) MEAN DIAMETER RIPRAP FILTER MATERIAL

300cm (120in.)

W

MINIMUM FREEBOARD
OF 25cm. (10in.)
Glossary

**Best Management Practice (BMP):** Activities, practices, and maintenance procedures that prevent or reduce the release of pollutants to waters. The techniques lessen the environmental impacts of land used, and may involve structures, vegetation, or altering construction operations.

**Berm:** A constructed barrier of compacted earth, rock or gravel.

**Channel:** A feature that conveys surface water and is open to the air. Channels may be constructed or natural.

**Check Dam:** Small dam constructed in a gully or other small watercourse to decrease the streamflow velocity, minimize channel scour, and promote deposition of sediment.

**Contour Line:** An imaginary line on the surface of the earth connecting points of the same elevation. Contour lines provide a representation of the land slopes and topography.

**Denuded Area:** A portion of land surface on which the vegetation or other soil stabilization features have been removed, destroyed, or covered, and which may erode.

**Design Storm:** A rainfall event of specified size and return frequency (i.e. a storm that has a return period of 2 years), which is used to calculate the runoff volume and peak flow rate.

**Ditch:** A long narrow excavation dug in the earth for drainage.

**Dormancy:** The condition of a plant or seed in which life functions are virtually at a standstill.

**Downcutting:** Channel erosion characterized by erosion of the channel bottom, causing the channel to deepen and become entrenched. Also referred to incising.

**Earth-disturbing Activity:** Any grading, excavating, filling or other alteration of the earth’s surface where natural or man-made ground cover is destroyed.

**Erosion/Sedimentation Control:** Any temporary or permanent measures taken to reduce erosion, control siltation and sedimentation, and ensure that sediment-laden water does not leave the site.

**Exfiltration:** The downward movement of runoff through the bottom of an infiltration trench, into the ground.

**Fascine:** A long bundle of sticks or wood bound together and used for such purposes as filling ditches and making revetments for river banks.

**Fathom:** A measure of depth of water equal to 6 feet.

**Fertilizer Analysis:** The percentage of fertilizer, expressed in terms of nitrogen, phosphoric acid, and potash. For example, a fertilizer with a 6-12-6 contains 6% nitrogen (N), 12% available phosphoric acid (P$_2$O$_5$), and 6% water-soluble potash (K$_2$O).

**Filter Fabric:** A woven or nonwoven, water permeable material generally made of synthetic products such as polypropylene used in erosion and sediment control applications to trap sediment or prevent clogging of aggregates by fine soil particles.

**Forb:** An herb other than grass.
Freeboard: The vertical distance between the design water surface elevation and the maximum possible elevation before overtopping.

Frequency of Storm: The anticipated period in years that will elapse, based on average probability of storms in the design region, before a storm of a given intensity and/or total volume will recur.

Gabion: A rectangular wire mesh cage filled with rock that may be used to prevent erosion, or as a retaining wall.


Grading: Earth disturbing activities including excavation, cutting, filling, stockpiling, or any combination thereof.

Grassed Waterway: A natural or constructed waterway, usually broad and shallow, covered with erosion resistant grasses, used to conduct surface water from an area at a reduced flow rate.

Grubbing: Removing stumps, roots or brush.

Gully: A channel caused by the concentrated flow of surface and stormwater runoff over unprotected erodible land.

Impoundment: A natural or man-made containment for surface water.

Infiltration: The gradual downward flow of water from the surface through to groundwater.

Low Flow (Base Flow): The stream flow sustained between runoff events. Its primary source is groundwater.

Outlet: Point of water disposal from a stream, river, lake, tidewater, or artificial drain.

Permeability: The capacity for transmitting runoff through a material or into the soil. It is measured by the rate at which a fluid of standard viscosity can move through the material in a given interval of time, under a given hydraulic gradient.

Piping: Seepage or subsurface flow often causing removal of soil, eroding larger and larger pathways or “pipes”.

Rill: A small intermittent watercourse with steep sides, usually only a few inches deep. Rills are often caused by an increase in surface water flow when soil is cleared of vegetation.

Riprap: Rock or stone placed over a bedding of geotextile or sand, used to armour slopes against flowing water or wave action.

Riser: A vertical pipe extending from the bottom of a BMP pond that is used to control the discharge rate.

Runoff: Water originating from rainfall and other precipitation that is found in drainage facilities, rivers, streams, seeps, ponds, lakes as well as shallow ground water.

Sediment: Fragmented material that originates from weathering and erosion of rocks or unconsolidated deposits, and is transported by, suspend in, or deposited by water.

Sedimentation: The depositing or formation of sediment.

Settling Pond: Any pond used as a sediment basin or sediment trap.
**Sheet Erosion:**  The relatively uniform removal of soil from an area without the development of conspicuous water channels.

**Sheet Flow:**  Diffuse runoff flowing overland in a thin layer not concentrated and not in a defined channel.

**Siltation:**  The process by which a river, lake or other body becomes clogged with sediment. Silt can clog gravel beds and affect aquatic fish habitat.

**Soil Stabilization:**  Vegetative or structural soil cover controlling erosion that includes permanent and temporary seed, mulch, sod, pavement, etc.

**Source Control BMP:**  A BMP that is intended to prevent pollutants from entering stormwater. Examples include erosion control practices and maintenance of facilities.

**Stream:**  A system including permanent or seasonally flowing water, a defined channel, floodplain, and riparian ecosystem. Streams have no defined size range, but are generally considered smaller than rivers.

**Stormwater Treatment:**  The removal of pollutants from urban runoff and improvements in water quality, accomplished largely by deposition and utilizing the benefits of natural processes.

**Topography:**  General term to include characteristics of the ground surface such as plains, hills, mountains, degree of relief, steepness of slopes and other physiographic features.

**Treatment BMP:**  A BMP that is intended to remove pollutants from stormwater. Examples include sediment traps and pond, and oil/grit separators.

**Vegetation:**  All organic plant life growing on the surface of the earth.

**Water Body:**  Surface waters including rivers, streams, lakes, and wetlands.